Alpha-Thalassemia/mental Retardation syndrome, X-Linked (ATRX)

Was ist Alpha-Thalassemia/mental Retardation syndrome, X-Linked (ATRX)?

Diese seltene Krankheit ist eine genetische Erkrankung, die hauptsächlich Männer betrifft. Bisher wurden mehr als 200 Fälle gemeldet.

Die Hauptmerkmale des syndrom umfassen schwere geistige Behinderung, Entwicklungsverzögerung und einzigartige Gesichtszüge.

Diese syndrom ist auch bekannt als:
Alpha-Thalassämie/geistige Retardierung Syndrom; Nichtlöschungstyp Atr-x Syndrom Attr; Nichtlöschungstyp ATR2

Was Genveränderungen verursachen Alpha-Thalassemia/mental Retardation syndrome, X-Linked (ATRX)?

Mutationen zum ATRX-Gen sind für die Syndromes verantwortlich. Es wird dann angenommen, dass Mutationen an diesem Gen die HBA1- und HBA2-Gene beeinflussen, deren Defekte für die Alpha-Thalassämie verantwortlich sind.

Als vererbter Zustand eines X-chromosomalen rezessiven Musters können Männer die Mutation nicht an ihre Söhne weitergeben.

Syndrome, die in einem X-chromosomal-rezessiven Muster vererbt wurden, betreffen im Allgemeinen nur Männer. Männer haben nur ein X-Chromosom, und daher verursacht eine Kopie einer Genmutation das Syndrom. Frauen mit zwei X-Chromosomen, von denen nur eines mutiert ist, sind wahrscheinlich nicht betroffen.

Was sind die wichtigsten symptome von Alpha-Thalassemia/mental Retardation syndrome, X-Linked (ATRX)?

Geistige Behinderung und verzögerte Entwicklung sind schwerwiegend symptome des syndrom. Die meisten Menschen haben eine sehr eingeschränkte Sprache und verzögerte motorische Fähigkeiten.

Häufige Gesichtsmerkmale sind weit auseinander stehende Augen, eine kleine Nase, nicht gedrehte Nasenlöcher und tief angesetzte Ohren. Die Gesichtszüge werden mit der Zeit gröber, was zu einem flacheren Gesicht und einer verkürzten Nase führt. Ein sehr kleiner Kopf, Kleinwuchs und Skelettanomalien sind ebenfalls häufige Symptome.

Zu den Gesundheitszuständen im Zusammenhang mit der Erkrankung gehören leichte Alpha-Thalassämie, blasse Haut, Schwäche und Müdigkeit. Reflux und schwere Verstopfung sind ebenfalls üblich.

Mögliche klinische Merkmale/Merkmale:
Infantile Muskelhypotonie, Stoffwechselanomalie/Homöostase, Kurze Nase, Übelkeit und Erbrechen, Neurologische Sprachstörung, Antevertierte Nasenlöcher, Myopie, Intellektuelle Behinderung, Kyphoskoliose, Muskelhypotonie, Makroglossie, Männlicher Pseudohermaphroditismus, Spitzfinger, Tief sitzende Ohren, Mikropenis, Mikrotie , Hypospadie, Sehbehinderung, Globale Entwicklungsverzögerung, Postnatale Wachstumsverzögerung, Kognitive Beeinträchtigung, Hypoplasie des Penis, Hypertelorismus, Halbwirbel, Hemiplegie/Hemiparese, Kleinwuchs, Hydronephrose, gastroösophagealer Reflux, Eingedrückter Nasenrücken, Rezidivierende Harnwegsinfektionen, Schultertuch Agenesie, posterior rotierte Ohren, Krampfanfall, Optikusatrophie, sensorineurale Schwerhörigkeit, fehlende Stirnhöhlen, Megakolon aganglionär, mehrdeutige Genitalien, Zahnanomalie, Zungenanomalie, Aplasie/Hypoplasie des Corpus callosum, selbstverletzendes Verhalten, Autismus, Anomalie der Fontanellen oder Schädelnähte, Anomalie von Bewegung

Wie wird jemand getestet? Alpha-Thalassemia/mental Retardation syndrome, X-Linked (ATRX)?

Die ersten Tests für das Alpha-Thalassämie / Mental Retardation-Syndrom, X-Linked, können mit einem Screening der Gesichtsanalyse über die FDNA Telehealth Telegenetics-Plattform beginnen, mit der die Schlüsselmarker des Syndroms identifiziert und die Notwendigkeit weiterer Tests aufgezeigt werden können. Eine Konsultation mit einem genetischen Berater und dann einem Genetiker wird folgen. 

Basierend auf dieser klinischen Konsultation mit einem Genetiker werden die verschiedenen Optionen für Gentests geteilt und die Zustimmung für weitere Tests eingeholt.

Medizinische Informationen zu Alpha-Thalassämie/geistiger Retardierung Syndrom, X-verbunden

Weatherall et al., (1981) first described a group of mentally retarded patients with haematological evidence of haemoglobin H disease. Wilkie et al., (1990) have carried out detailed molecular studies and demonstrated that some patients have extensive deletions involving the alpha-globin gene, whereas in others no deletion is apparent.
This entry refers to cases in the latter group which are caused by an X-linked gene. All cases have been male, apart from a phenotypic female in the original report who had a 46,XY karyotype. The X-linked family described by Porteous and Burn (1990) have been shown to have this condition. Clinically there is short stature, microcephaly, hypertelorism, a flat face with a depressed nasal bridge, epicanthic folds, macrostomia, small teeth, and a V-shaped upper lip or short philtrum with an everted lower lip. Cryptorchidism or hypogonadism is common and seizures are a feature. Reardon et al., (1995) and McPherson et al., (1995) and Jezela-Stanek (2009), reported further cases with male pseudohermaphroditism. Ogle et al., (1994) reported two sibs where the only genital abnormality was a deficiency of the foreskin. One reported case had hemivertebrae. Two cases have been reported with asplenia (Villard et al., 2000, Leahy et al., 2005).
Martucciello et al., (2006) reported on the gastointestinal symptoms in a group of 128 patients, and stressed the frequency of vomiting, regurgitation, abdominal pain and constipation. Pseudo-volvulus and ultra-short Hirschsprung does occur.
The diagnosis is confirmed by demonstrating haematological features of alpha thalassaemia. Red blood cells are usually hypochromic and microcytic and contain HbH bodies, which must be demonstrated by staining with 1% brilliant cresyl blue. HbH bodies are present in 1-40% of red cells. In some cases great difficulty might be encountered in demonstrating these, and tests might need to be repeated (see Logie et al., 1994 and Gibbons et al., 1995).
The X-linked pedigree described by Chudley et al., (1988) has similarities, but has been found to be negative for HbH bodies (but has a mutation - see Abidi et al., 2005). In general, about 85% of cases have HbH bodies (Reardon, 2005 - personal communication).

GENETICS

The gene maps to Xq12-Xq21 (Gibbons et al., 1992). Houdayer et al., (1993) confirmed this linkage in a large French family. Gibbons et al., (1995) isolated a gene for the condition. It is a global transcriptional regulator, XNP (XH2), a member of a subgroup of the helicase superfamily (Hendrich and Bickmore (2001). Picketts et al., (1996) characterised the full length cDNA and described further mutations. Mutations in seven Japanese families were reported by Wada et al., (2000). Villard et al., (1996) reported a large family where one affected individual had clinical features of the condition but no HbH bodies, whereas affected cousins had classical features of the condition. Ion et al., (1996) demonstrated a four base pair deletion at an intron/exon boundary in a large family segregating for the condition associated with sex reversal. Some cases had features of partial optic atrophy and partial ocular albinism. Further mutations were reported by Gibbons et al., (1997) and Villard et al., (1999). Bachoo and Gibbons (1999) reported two females where there was evidence of gonadal mosaicism. McDowell et al., (1999) showed that the ATRX protein localises to pericentromeric heterochromatin and the short arms of acrocentric chromosomes.
Saugier-Veber et al., (1995) suggested that Juberg-Marsidi syndrome (qv) might be allelic. Mutations have now been found in cases with features of Juberg-Marsidi syndrome (Villard et al., 1996), and in cases with the full ATR-X phenotype without evidence of alpha thalassemia.
Ades et al., (1991) reported two brothers who were suggested to have Smith-Fineman-Myers syndrome (qv) (one with asplenia). There were similarities to alpha thalassaemia-mental retardation syndrome (non-deletional type). A splice site mutation in the ATRX gene was subsequently detected in this family (Villard et al., 2000).
The family reported by Carpenter et al., (1999) most likely manifested this condition, although mental retardation was only moderate and genitalia and testicular volumes were normal. Carrier females had skewed X-inactivation in this family. Lossi et al., (1999) report evidence that the mutation causes skewed X-inactivation in heterozygous females. A manifesting female (no pictures shown) with totally skewed X-inactivation was reported by Badens et al., (2006).
It is possible that the two male sibs reported by Achermann et al., (1999) had this condition. No mention of ATR-X was made in the article. Note that cases within a family vary considerably. Some might only have mild retardation, epilepsy and 'subtle dysmorphic features' - pictures shown (Guerrini et al., 2000). Gibbons and Higgs (2000) provide a good review of the molecular-clinical spectrum of the condition.
Yntema et al., (2002) reported a large pedigree where affected males had borderline to moderate mental retardation. Skewed X-inactivation was found in all carrier females. HbH inclusion bodies were found in three out of four affected males tested. The characteristic facial features were not present in adulthood from the photographs published. All showed behaviour problems with chaotic behaviour and aggressive outbursts. One patient appears to have had seizures. The genitalia are not mentioned.
A female reported by Akahoshi et al., (2005) with a 16p13 duplication, clinically looked like ATR-X. The authors suggested that some target genes of the ATRX protein might reside in the duplicated segment. This is the same patient that was reported by Kurosawa et al., (1996). Further evidence that duplications of the ATRX gene can cause the phenotype is reported by Thienpont et al., (2007). The duplication was identified by array-CGH. One of the sibs had an absent gall bladder. Another duplication was reported by Friez et al., (2009).
Badens et al., (2006) performed a genotype-phenotype analysis in 16 families and reported that mutations in the helicase domain are associated with a milder phenotype than those in the PHD domain.


* This information is courtesy of the L M D.

If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Erhalten Sie eine schnellere und genauere Genetische Diagnostik!

Mehr als 250,000 Patienten erfolgreich analysiert!
Warten Sie nicht Jahre auf eine Diagnose. Handeln Sie jetzt und sparen Sie wertvolle Zeit.

Los geht's!

"Unser Weg zu einer Diagnose seltener Krankheiten war eine 5 -jährige Reise, die ich nur als Versuch beschreiben kann, einen Roadtrip ohne Karte zu unternehmen. Wir kannten unseren Ausgangspunkt nicht. Wir kannten unser Ziel nicht. Jetzt haben wir Hoffnung. "

Bild

Paula und Bobby
Eltern von Lillie

Was ist FDNA Telehealth?

FDNA Telehealth ist ein führendes Unternehmen für digitale Gesundheit, das einen schnelleren Zugang zu genauen genetischen Analysen bietet.

Mit einer von führenden Genetikern empfohlenen Krankenhaustechnologie verbindet unsere einzigartige Plattform Patienten mit Genexperten, um ihre dringendsten Fragen zu beantworten und eventuelle Bedenken hinsichtlich ihrer Symptome zu klären.

Vorteile von FDNA Telehealth

FDNA-Symbol

Credibility

Unsere Plattform wird derzeit von über 70% der Genetiker verwendet und wurde zur Diagnose von über 250,000 Patienten weltweit eingesetzt.

FDNA-Symbol

Barrierefreiheit

FDNA Telehealth bietet innerhalb von Minuten eine Gesichtsanalyse und ein Screening, gefolgt von einem schnellen Zugang zu genetischen Beratern und Genetikern.

FDNA-Symbol

Benutzerfreundlichkeit

Unser nahtloser Prozess beginnt mit einer ersten Online-Diagnose durch einen genetischen Berater, gefolgt von Konsultationen mit Genetikern und Gentests.

FDNA-Symbol

Genauigkeit & Präzision

Erweiterte Funktionen und Technologien für künstliche Intelligenz (KI) mit einer Genauigkeitsrate von 90% für eine genauere genetische analyse.

FDNA-Symbol

Preis-Leistungs-Verhältnis

Schnellerer Zugang zu genetischen Beratern, Genetikern, Gentests und einer Diagnose. Falls erforderlich, innerhalb von 24 Stunden. Sparen Sie Zeit und Geld.

FDNA-Symbol

Privatsphäre & Sicherheit

Wir garantieren den größtmöglichen Schutz aller Bilder und Patienteninformationen. Ihre Daten sind immer sicher und verschlüsselt.

FDNA Telehealth kann Sie einer Diagnose näher bringen.
Vereinbaren Sie innerhalb von 72 Stunden ein Online-Treffen zur genetischen Beratung!

EspañolDeutschPortuguêsFrançaisEnglish