LEOPARD syndrome

Was ist LEOPARD syndrome?

LEOPARD syndromeist eine seltene genetische Erkrankung. Das Wichtigste symptome des syndrom die Haut, das Herz, das Innenohr und die Genitalien betreffen.

Es gehört zu einer Gruppe von Krankheiten, die als RASopathien bekannt sind. Der RAS-Weg des Körpers ist für sein Wachstum und seine Entwicklung verantwortlich. RASopathien, wie LEOPARD syndrome, werden durch Genveränderungen verursacht, die diese Signalwege in irgendeiner Weise beeinflussen und beeinträchtigen.

Was Genveränderungen verursachen LEOPARD syndrome?

Es gibt drei Arten des Syndroms, die jeweils durch eine bestimmte Genänderung verursacht werden.

Typ 1: verursacht durch Mutationen im PTPN11-Gen.
Typ 2: verursacht durch Mutationen im RAF1-Gen.
Typ 3: verursacht durch Mutationen im BRAF-Gen.

Mutationen im MAP2K1-Gen sind für einige Fälle des Syndroms verantwortlich.

Es wird in einem autosomal dominanten Muster oder als Ergebnis einer De-novo-Mutation vererbt.

In einigen Fällen kann ein genetisches Syndromes das Ergebnis einer De-novo-Mutation und der erste Fall in einer Familie sein. In diesem Fall handelt es sich um eine neue Genmutation, die während des Fortpflanzungsprozesses auftritt.

Im Falle einer autosomal dominanten Vererbung ist nur ein Elternteil der Träger der Genmutation, und sie haben eine 50% ige Chance, sie an jedes ihrer Kinder weiterzugeben. Syndromes, die in einer autosomal dominanten Vererbung vererbt werden, werden durch nur eine Kopie der Genmutation verursacht.

Was sind die wichtigsten symptome von LEOPARD syndrome?

Der Name des Syndroms ist eine Abkürzung für die Hauptsymptome der Erkrankung.

Lentigines: dunkle Flecken auf der Haut
Elektrokardiographische Leitungsdefekte: Probleme mit der elektrischen Aktivität des Herzens
Augenhypertelorismus: weit auseinander liegende Augen
Lungenstenose: Der Abfluss aus dem rechten Ventrikel des Herzens ist eingeschränkt oder beeinträchtigt
Anomalien der Genitalien
Reatriertes Wachstum: Kleinwuchs
Taubheit: verursacht durch Innenohranomalien



Wie wird jemand getestet? LEOPARD syndrome?

Die ersten Tests für LEOPARD syndrome kann mit einem Gesichtsanalyse-Screening beginnen, durch die FDNA Telehealth Telegenetik-Plattform, die die Schlüsselmarker der syndrom und skizzieren Sie die Notwendigkeit weiterer Tests. Es folgt ein Beratungsgespräch mit einem genetischen Berater und dann einem Genetiker.

Basierend auf dieser klinischen Konsultation mit einem Genetiker werden die verschiedenen Optionen für Gentests geteilt und die Zustimmung für weitere Tests eingeholt

Medizinische Informationen zu LEOPARD syndrome

The acronym LEOPARD stands for Lentigines (multiple), Ocular hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth and Deafness (sensorineural) (Gorlin et al., 1969). The lentigines are small (less than 5mm) dark brown spots, concentrated on the face and upper trunk. They develop at an earlier age than freckles, and unlike the latter do not increase in number on exposure to the sun. Do note the rapid growth of the lentigines in 2 patients reported by Kalev et al., (2010). Cardiac abnormalities include mild pulmonary stenosis, subaortic stenosis, or other abnormalities. There is widening of the QRS complex with bundle branch block, abnormal P-waves and prolongation of the P-R interval. Genital abnormalities include hypogenitalism and hypospadias. Height is usually below the 25th centile, but is not severely affected. Sensorineural deafness is variable, ranging from normal to severe. There is also an association with granular cell schwannomas. Coppin and Temple (1997) provide a good review. Sarkozy et al., (2004) reviewed 30 patients with mutations: 86% had multiple lentigenes, 90% were facially dysmorphic, 71% had cardiac involvement and 25% had sensorineural deafness. These authors state that the diagnosis should not be ruled out in young people without lentigines, but who have a hypertrophic cardiomyopathy (or pulmonary stenosis) and sensorineural deafness. In a further study of those with a mutation, Digilio et al., (2006) suggest that the diagnosis can be made in the first year of life in those with a hypertrophic cardiomyopathy, cafe-au-lait spots, hypertelorism, ptosis, down-slanting palpebral fissures and dysmorphic ears. Noonan's-NF would need to be excluded. Autosomal dominant isolated lentigines occur; this has been mapped at 4q21.1-q22.3 (Xing et al., 2005).
Multiple dot cortical lens opacities have been reported in patients in their third decade. There may also be patchy defects in the retinal pigment epithelium. A mother and her monozygotic twin offspring were reported by Rudolph et al., (2001) with variable expression of chorioretinal colobomata. The patient reported by Choiet al., (2003) had a congenital corneal tumour (choristoma) in both eyes. Leukemia has been associated with the condition (Laux et al., 2008) as has a patient with a scalp melanoma (Cheng et al., 2013)
Edman Ahlbom et al., (1995) excluded linkage to the NF1 gene in a small dominant family. On the other hand Wu et al., (1996) found an NF1 gene mutation in a 32-year-old woman thought to have some features of the condition. She had a valvular aortic stenosis and mitral insufficiency, mild mental handicap, lentignes, cafe-au-lait spots, hypertelorism but no neurofibromas. Schepis et al., (1998) reported a possible case with ichthyosis, however this case was unusual as there were apparently no heart abnormalities and the boy also had axillary freckling, two cafe au lait spots, and a neurofibroma.
Legius et al., (2002) reported a father and daughter and an unrelated patient with features of the condition who had a Ty279Cys mutation in the PTN11 gene. Digilio et al., (2002) studied nine cases with LEOPARD syndrome and two cases with Noonan syndrome who had multiple cafe au lait spots and found one of two specific mutations in the PTPN11 gene in two of these cases. The mutations were Ty279Cys and Thr468Met.
Sarkozy et al., (2003) looked for PTPN11 gene mutations in 71 patients with Noonan syndrome and 13 with multiple lentigenes or LEOPARD syndrome. Fourteen different PTPN11 mutations were detected in 23 patients with Noonan syndrome and 11 with lentigenes or LEOPARD syndrome. Pulmonary valve stenosis, most commonly seen in Noonan syndrome, was related to an exon 8 mutation hot spot, while hypertrophic cardiomyopathy, predominant in patients with lentigenes or LEOPARD syndrome, was associated with mutations in exon 7 and 12. Atrial septal defects were related to exon 3 mutations, while atrioventricular canal defects and mitral valve anomalies were found in association with different exon mutations. Those with Gln510Glu mutations might have a rapidly progressive obstructive cardiomyopathy (Digilio et al., 2006).
Pacheco et al., (2002) excluded linkage to the PTPN11 gene in a large dominant family segregating for isolated multiple lentigines without other abnormalities. Two single cases with lentigines and nothing else were reported by Chong et al., (2004. A large family with dominantly inheritance of lentigines was reported by Pacheco et al., (2004). The condition showed linkage to 6q. Mutations in PTPN11 were reported by Yoshida et al., (2004). PTPN11encodes SHP-2, which is involved in a number of cytokine and growth factor initiated signal transduction processes. SHP-2 has 2 domains, one at the N-terminus and the other a phosphatase domain (PTP) at he C terminus. It is in the PTP domain that the LEOPARD syndrome mutations occur (Keren et al., 2004). One of the Keren et al., (2004) patients developed acute myeloid leukaemia. In their series of children with cancer, Merks et al., (2005) reported on a molecularly proven patient with a neuroblastoma. A medulloblastoma has also been reported (Rankin et al., 2013). Two families without mutations, were reported by Kalidas et al., (2005). Two patients reported by Digilio et al., (2006) and 1 by Takahashi et al., (2005) all with a Gln510Glu mutation, had a rapidly progressive obstructive, hypertrophic cardiomyopathy.
Note the patient reported by Koudava et al., (2009) with a BRAF mutation. The condition is well reviewed by Martinez-Quintana and Rodriguez-Gonzales (2012).
A mutation in MAP2K1 was found by Nishi et al., (2015) in a patient with Noonan features and multiple lentigines, but without a cardiac lesion.
Plexiform neuromas, dumbbell spinal tumours were reported in 3 families with PTPN11 mutations (Conboy et al., 2016)
Zhang et al. (2016) described three Chinese boys with multiple lentiginous phenotypes. The authors reported novel heterozygous missense and frameshift mutations in SASH1 and a missense mutation in PTPN11 in three respective patients. Patient 1 had multiple freckle-like lesions that began to appear over his entire body at the age of three years. Multiple lentigines intermixed with scattered hypopigmented spots were noted on the trunk and face, and mild dyschromatosis was observed in elbow joints and dorsal area of hands and feet. The boy’s mother, maternal grandmother and maternal aunt had similar lentiginous phenotype. Patient 2 was a 15-year-old boy. His whole skin surface was relatively white, and multiple lentigines were noted on the face, trunk, extremities and mucous membranes. Patient 3 was an 11-year-old boy with several café au-lait spots (CALSs) and freckles over the trunk and face since he was two years old. He also had dysmorphic craniofacial features, ocular hypertelorism, bone anomalies and lack of mucocutaneous hyperpigmentation of the lips. He also had a surgical history of pectus excavatum.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Erhalten Sie eine schnellere und genauere Genetische Diagnostik!

Mehr als 250,000 Patienten erfolgreich analysiert!
Warten Sie nicht Jahre auf eine Diagnose. Handeln Sie jetzt und sparen Sie wertvolle Zeit.

Los geht's!

"Unser Weg zu einer Diagnose seltener Krankheiten war eine 5 -jährige Reise, die ich nur als Versuch beschreiben kann, einen Roadtrip ohne Karte zu unternehmen. Wir kannten unseren Ausgangspunkt nicht. Wir kannten unser Ziel nicht. Jetzt haben wir Hoffnung. "

Bild

Paula und Bobby
Eltern von Lillie

Was ist FDNA Telehealth?

FDNA Telehealth ist ein führendes Unternehmen für digitale Gesundheit, das einen schnelleren Zugang zu genauen genetischen Analysen bietet.

Mit einer von führenden Genetikern empfohlenen Krankenhaustechnologie verbindet unsere einzigartige Plattform Patienten mit Genexperten, um ihre dringendsten Fragen zu beantworten und eventuelle Bedenken hinsichtlich ihrer Symptome zu klären.

Vorteile von FDNA Telehealth

FDNA-Symbol

Credibility

Unsere Plattform wird derzeit von über 70% der Genetiker verwendet und wurde zur Diagnose von über 250,000 Patienten weltweit eingesetzt.

FDNA-Symbol

Barrierefreiheit

FDNA Telehealth bietet innerhalb von Minuten eine Gesichtsanalyse und ein Screening, gefolgt von einem schnellen Zugang zu genetischen Beratern und Genetikern.

FDNA-Symbol

Benutzerfreundlichkeit

Unser nahtloser Prozess beginnt mit einer ersten Online-Diagnose durch einen genetischen Berater, gefolgt von Konsultationen mit Genetikern und Gentests.

FDNA-Symbol

Genauigkeit & Präzision

Erweiterte Funktionen und Technologien für künstliche Intelligenz (KI) mit einer Genauigkeitsrate von 90% für eine genauere genetische analyse.

FDNA-Symbol

Preis-Leistungs-Verhältnis

Schnellerer Zugang zu genetischen Beratern, Genetikern, Gentests und einer Diagnose. Falls erforderlich, innerhalb von 24 Stunden. Sparen Sie Zeit und Geld.

FDNA-Symbol

Privatsphäre & Sicherheit

Wir garantieren den größtmöglichen Schutz aller Bilder und Patienteninformationen. Ihre Daten sind immer sicher und verschlüsselt.

FDNA Telehealth kann Sie einer Diagnose näher bringen.
Vereinbaren Sie innerhalb von 72 Stunden ein Online-Treffen zur genetischen Beratung!

EspañolDeutschPortuguêsFrançaisEnglish