Pfeiffer syndrome

Was ist Pfeiffer syndrome?

Es ist eine seltene Genetik syndrom. Es umfasst die vorzeitige Verschmelzung bestimmter Schädelknochen sowie Daumenanomalien und Anomalien der großen Zehen. Weitere Hauptmerkmale sind hervorstehende Augen und Hörverlust. Es gibt derzeit 3 Haupttypen der syndrom die identifiziert wurden. Sie unterscheiden sich in ihren Ursachen und den genauen spezifischen symptome mit ihnen verbunden.

Dies syndrom ist auch bekannt als:
Akrozephalosyndaktylie - Typ V Akrozephalosyndaktylie Typ V Akrozephalosyndaktylie, Typ V; Acs5 Acs V ACSV Noack Syndrom

Was Genveränderungen verursachen Pfeiffer syndrome?

Typ 1 wird durch Veränderungen im FGFR1- und FGFR2-Gen verursacht.

Die Typen 2 und 3 werden durch Änderungen im FGFR2-Gen verursacht.

Das Syndromes wird autosomal-dominant vererbt. Im Falle einer autosomal dominanten Vererbung ist nur ein Elternteil der Träger der Genmutation, und sie haben eine 50% ige Chance, sie an jedes ihrer Kinder weiterzugeben. Syndromes, die in einer autosomal dominanten Vererbung vererbt werden, werden durch nur eine Kopie der Genmutation verursacht.

Was sind die wichtigsten symptome von Pfeiffer syndrome?

Das Wichtigste symptome kann je nach Art der syndrom Personen betroffen sind.

Geben Sie 1 ein: die Hauptsache symptome eine vorstehende Stirn, weit auseinander stehende Augen, unterentwickelter Oberkiefer, vorstehender Unterkiefer und Zahnanomalien. Das syndrom hat normalerweise keinen Einfluss auf die intellektuellen Fähigkeiten und die Entwicklung.

Geben Sie 2 ein: die symptome mit dieser art von syndrom gelten als schwerer. Personen haben einen sogenannten Kleeblattschädel, der auch zu einer Zunahme der Flüssigkeit im Schädel und einer nachfolgenden Druckerhöhung auf das Gehirn führen kann. Diese Art von syndrom wirkt sich auch auf die neurologische Entwicklung aus und zeigt sich normalerweise mit geistiger Behinderung und Entwicklungsverzögerung. Gesundheitsprobleme im Zusammenhang mit dieser Art von syndrom kann schwerwiegend sein, wenn sie im Säuglingsalter nicht richtig und umgehend behandelt wird.

Geben Sie 3 ein: dies präsentiert sich mit ähnlichem symptome wie Typ 2, jedoch ohne Kleeblattschädel. Weitere Merkmale dieser Form des syndrom Dazu gehören eine kürzere Schädelbasis, mit Zähnen geborene Babys, Vorwölbungen der Augen und Anomalien der inneren Bauchorgane. Geistige Behinderung ist ein bestimmendes Merkmal dieser Form der syndrom sowie.

Mögliche klinische Merkmale/Merkmale:
Kurze Mittelphalanx der Zehen, Ptosis, Strabismus, Kurzes Philtrum, Synostose der Handwurzelknochen, Symphalangismus, der die Phalangen der Hand betrifft, Verkürzung aller Mittelphalangen der Finger, Brachydaktylie, Koronar Kraniosynostose, Ellenbogenankylose, Kleeblattschädel, Clinodaktylie 4. Finger, Gesichtsasymmetrie, Fingersyndaktylie, Zahnengstand, Malare Abflachung, Abwärts geneigte Lidspalten, Intellektuelle Behinderung, Kurze Nase, Unterkieferprognathie, Hypoplasie des Oberkiefers, Hypoplasie des Jochbeins, Hohe Stirn, Hoher Gaumen, Hydrozephalus, Humeroradial Synostose, Hypertelorismus, Hyperlordose, Eingedrückter Nasenrücken, Kleinwuchs, Autosomal-dominante Vererbung, Offener Mund, Flache Augenhöhlen, Kurzer Hals, Anomalie des Hüftknochens, Bronchomalazie, breiter Hallux, breiter Daumen, knorpelige Luftröhre, Brachyturrizephalie, breiter Nasenrücken, Arnold -Chiari-Fehlbildung, Abnormalität der Daumenphalanx, Abnorme Gaumenmorphologie, Choanalstenose, Choanalatresie

Wie wird jemand getestet? Pfeiffer syndrome?

Die ersten Tests für Pfeiffer syndrome kann mit einem Gesichtsanalyse-Screening beginnen, durch die FDNA Telehealth Telegenetik-Plattform, die die Schlüsselmarker der syndrom und skizzieren Sie die Notwendigkeit weiterer Tests. Es folgt ein Beratungsgespräch mit einem genetischen Berater und dann einem Genetiker. 

Basierend auf dieser klinischen Konsultation mit einem Genetiker werden die verschiedenen Optionen für Gentests geteilt und die Zustimmung für weitere Tests eingeholt.

Medizinische Informationen zu Pfeiffer syndrome

The main features of this condition are craniostenosis, broad thumbs and great toes, and variable soft tissue syndactyly. In the feet the halluces are characteristically in the varus position. Craniostenosis usually affects the coronal sutures, but a clover-leaf skull can also be seen. The facies resemble Crouzon syndrome. Radiographs of the hands and feet reveal brachymesophalangy, broad distal phalanges, deformed proximal phalanges of the thumbs and great toes, symphalangism and a broad or duplicated first metatarsal. Ohashi et al., (1993) reported a case with anal atresia. It is difficult to evaluate the case with coronal craniosynostosis, anal atresia and syndactyly of toes 2 and 3 reported by Pfeiffer et al., (1996) because no photos were published. Kodaka et al., (2004) published another case (could be Pfeiffer or Saethre-Chotzen), with an imperforate anus. As with other craniosynostosis syndromes (See Apert syndrome and Crouzon syndrome) some cases can have fusion of the tracheal cartilage rings (Stone et al., 1990; Lin et al., 1995; Okajima et al., 2003; Zackai et al., 2003) or a cartilaginous tracheal sleeve (Gonzales et al., 2005). Some patients with the FGFR1 mutation (see below) have the hand anomalies without craniosynostosis (Hackett and Rowe, 2006). Deafness, especially conductive, is frequent (Desai et al., 2010) and anterior segment ocular findings have been reported (Barry et al., 2010).
Cohen (1993) recognises three subtypes. Type 1 is the classic form as reported by Pfeiffer. Type 2 has a cloverleaf skull together with ankylosis of the elbows (Plomp et al., 1998; Robin et al., 1998; Stevens et al., 2006). Type 3 is similar to type 2, but without a cloverleaf skull and with severe proptosis. Types 2 and 3 have a poor prognosis for survival but mental development may not be severely affected (Robin et al., 1998). Cases with cloverleaf skull are usually sporadic. Martinelli et al., (1997) reported a case with subtype 2 diagnosed prenatally by ultrasound because of the cloverleaf skull. The case reported by Soekarman et al., (1992) of a boy with apparent cloverleaf skull whose mother was affected with classic Pfeiffer syndrome may not be an exception, as the cranial abnormalities were not as severe as usually seen in classic cloverleaf skull abnormality. A limited number of recurrent amino-acid changes (W290C, Y340C, C342R and S351C) are responsible for the most severe Pfeiffer phenotypes (Lajeunie et al., 2006). A fetus with facial and skeletal features of Pfeiffer syndrome and lethal multiple pterygium syndrome was reported by Baynam et al., (2008). Twenty-three Japanese patients were reviewed by Koga et al., (2012), Elbow ankylosis and sacrococcygeal defects strongly suggest the pesence of Pfeiffer syndrome in newborns with craniosynostosis. Severe cases (fetuses) reported by Khonsari et al., (2012) had megalencephaly, dilated ventricles and distinctive changes in the hippocampus and amygdala.
Muenke et al., (1994) showed that mutations in the fibroblast growth factor receptor-1 (FGFR1) gene caused Pfeiffer syndrome in a proportion of families. This gene maps to 8p11.2-p12 (Robin et al., 1994). Mutations in five unrelated families were found - all the same. There was a C to G transversion in exon 5 causing a proline to arginine substitution in the link between the second and third immunoglobulin-like domains of the extracellular portion of the molecule. Rossi et al., (2003) noted that the appearance of the feet is characteristic in this condition with a broad big toe in varus position and degrees of 2-3 toe syndactyly. They reported a father and daughter with this foot appearance without evidence of craniosynostosis.
Rutland et al., (1995) and Lajeunie et al., (1995) reported mutations in the B exon of FGFR2 in cases of Pfeiffer syndrome with relatively severe skull abnormalities. All the cases were isolated. Five cases were shown to have a T to C transition at nucleotide 1036 resulting in the replacement of a cysteine by an arginine. This mutation has previously been observed in a single case of Crouzon syndrome. Park et al., (1995) reported a sporadic case with an identical mutation. They interpreted the phenotype as being that of Jackson-Weiss syndrome, but it was the same as the Rutland and Lajeunie cases (see Jackson-Weiss syndrome for comment on ""sporadic"" Jackson-Weiss syndrome). A further replacement of the same cysteine by tyrosine in another case has been reported in three cases of Crouzon syndrome. Schafer et al., (1998) reported a case of Pfeiffer syndrome type 2 with a TRP290 cys mutation in FGFR2 that had previously been reported a patient with a Crouzon phenotype. Schell et al., (1995) found similar mutations in the FGFR2 gene. Meyers et al., (1996) showed further mutations in the FGFR2 gene in cases with Crouzon, Pfeiffer and 'Jackson-Weiss' phenotypes. In one family with a novel exon IIIc mutation (valine 359 phenyalanine) the proband and his father exhibited classical features of Crouzon syndrome whereas the paternal aunt resembled Pfeiffer syndrome with broad thumbs and great toes. Passos-Bueno et al., (1997) reported a case with severe syndactyly and duplication of the hallux - interpreted as an 'Apert-like phenotype' who had an A to G transition at the 3' acceptor splice site of the intron adjacent to exon B of FGFR2. Gripp et al., (1998) reported a case with type 3 who had a Ser351Cys mutation of FGFR2. Cornejo-Roldan et al., (1999) reported further mutations in the FGFR2 gene in Pfeiffer syndrome. Lajeunie et al., (2000) reported monozygotic twins with a Cys342Tyr mutation in the FGFR2 gene. One twin had a unilateral bifid thumb but in the other the hands were normal. A further comprehensive mutation series in the FGFR2 gene was reported by Kan et al., (2002). Six mutations in this series were in the tyrosine kinase domain (most are in exon 3a or 3c). Another tyrosine kinase domain mutation, in a severely affected child (with clover-leaf skull) was reported by Zankl et al., (2004). This was the same mutation as found in one of the Kan et al., (2002) series. In that family there was considerable phenotypic variability.
The infant reported by Sagehashi (1992) with craniosynostosis, ""deformation of thumbs"", choanal stenosis, a cartilaginous trachea and a caudal appendage most likely has Pfeiffer syndrome. Lai et al., (2008) also reported a case with a sacral appendage. The case reported by Cantrell et al., (1994) most likely has Pfeiffer syndrome.
The patient reported by Roscioli et al., (2000) with an FGFR1 P252R mutation, as an example of Jackson-Weiss syndrome has classical features of FGFR1 Pfeiffer syndrome.
Sweeney et al., (2002) reported a male infant who died at seven weeks with features of Pfeiffer syndrome and a sacral appendage. A Ser351Cys mutation was detected. Gonzales et al., (2005) reported three fetuses with vertebral anomalies including sacrococcygeal eversion with the same mutation.
Shotelersuk et al., (2002) reported a 15-year-old boy with a severe form of Pfeiffer syndrome associated with acanthosis nigricans. A W290C mutation in the FGFR2 gene was demonstrated. The patient also had multiple joint and vertebral ankyloses. Cohen (2002) reviews syndromes with acanthosis associated with other FGFR mutations.
Machado et a. (2017) described a mother and a daughter with Pfeiffer syndrome due to a novel heterozygous missense mutation. Clinical characteristics included coronal craniosynostosis, brachycephaly, asymmetry (more prominent in the mother), short forehead, midface hypoplasia, hypertelorism, exophthalmos, strabismus, high arched palate, slight enlarged first metacarpal, distal deviation of phalanges, and broad-deviated hallux.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Erhalten Sie eine schnellere und genauere Genetische Diagnostik!

Mehr als 250,000 Patienten erfolgreich analysiert!
Warten Sie nicht Jahre auf eine Diagnose. Handeln Sie jetzt und sparen Sie wertvolle Zeit.

Los geht's!

"Unser Weg zu einer Diagnose seltener Krankheiten war eine 5 -jährige Reise, die ich nur als Versuch beschreiben kann, einen Roadtrip ohne Karte zu unternehmen. Wir kannten unseren Ausgangspunkt nicht. Wir kannten unser Ziel nicht. Jetzt haben wir Hoffnung. "

Bild

Paula und Bobby
Eltern von Lillie

Was ist FDNA Telehealth?

FDNA Telehealth ist ein führendes Unternehmen für digitale Gesundheit, das einen schnelleren Zugang zu genauen genetischen Analysen bietet.

Mit einer von führenden Genetikern empfohlenen Krankenhaustechnologie verbindet unsere einzigartige Plattform Patienten mit Genexperten, um ihre dringendsten Fragen zu beantworten und eventuelle Bedenken hinsichtlich ihrer Symptome zu klären.

Vorteile von FDNA Telehealth

FDNA-Symbol

Credibility

Unsere Plattform wird derzeit von über 70% der Genetiker verwendet und wurde zur Diagnose von über 250,000 Patienten weltweit eingesetzt.

FDNA-Symbol

Barrierefreiheit

FDNA Telehealth bietet innerhalb von Minuten eine Gesichtsanalyse und ein Screening, gefolgt von einem schnellen Zugang zu genetischen Beratern und Genetikern.

FDNA-Symbol

Benutzerfreundlichkeit

Unser nahtloser Prozess beginnt mit einer ersten Online-Diagnose durch einen genetischen Berater, gefolgt von Konsultationen mit Genetikern und Gentests.

FDNA-Symbol

Genauigkeit & Präzision

Erweiterte Funktionen und Technologien für künstliche Intelligenz (KI) mit einer Genauigkeitsrate von 90% für eine genauere genetische analyse.

FDNA-Symbol

Preis-Leistungs-Verhältnis

Schnellerer Zugang zu genetischen Beratern, Genetikern, Gentests und einer Diagnose. Falls erforderlich, innerhalb von 24 Stunden. Sparen Sie Zeit und Geld.

FDNA-Symbol

Privatsphäre & Sicherheit

Wir garantieren den größtmöglichen Schutz aller Bilder und Patienteninformationen. Ihre Daten sind immer sicher und verschlüsselt.

FDNA Telehealth kann Sie einer Diagnose näher bringen.
Vereinbaren Sie innerhalb von 72 Stunden ein Online-Treffen zur genetischen Beratung!

EspañolDeutschPortuguêsFrançaisEnglish