Smith-Magenis syndrome (SMS)

Was ist Smith-Magenis syndrome (SMS)?

Smith-Magenis syndrom ist eine genetische Entwicklungsstörung. Individuen zeigen normalerweise liebevolle Persönlichkeiten, können aber auch Verhaltensprobleme und sich wiederholende Verhaltensweisen zeigen. Eine verzögerte Sprach- und Sprachentwicklung sowie Schlafstörungen sind charakteristisch für die syndrom sowie.

Diese seltene Krankheit betrifft mehrere Körperteile und zeichnet sich durch unterschiedliche Gesichtszüge aus. Diese einzigartigen Gesichtszüge können im Säuglings- und Kindesalter subtiler sein, werden aber im Allgemeinen mit zunehmendem Alter ausgeprägter.

Syndrom Synonyme:
Chromosom 17p11.2 Löschung Syndrom

Was Genveränderungen verursachen Smith-Magenis syndrome (SMS)?

Das Syndromes wird durch eine Deletion des RAI1-Gens auf Chromosom 17 verursacht. Es wird autosomal dominant vererbt, ist aber in vielen Fällen das Ergebnis einer neuen Mutation.

In einigen Fällen kann ein genetisches Syndrom das Ergebnis einer De-novo-Mutation und der erste Fall in einer Familie sein. In diesem Fall handelt es sich um eine neue Genmutation, die während des Fortpflanzungsprozesses auftritt.

Im Fall einer autosomal dominanten Vererbung ist nur ein Elternteil der Träger der Genmutation, und sie haben eine 50% ige Chance, sie an jedes ihrer Kinder weiterzugeben. Syndrome, die in einer autosomal dominanten Vererbung vererbt werden, werden durch nur eine Kopie der Genmutation verursacht.


Was sind die wichtigsten symptome von Smith-Magenis syndrome (SMS)?

Das Wichtigste symptome des syndrom Dazu gehören leichte bis mittelschwere geistige Behinderung, verzögertes Sprechen, Schlafstörungen und potenzielle Verhaltensprobleme.
Selbstverletzungen und wiederholte Selbstumarmungen sind häufig symptome einzigartig für die syndrom, ebenso wie ein Verhalten, das als Lecken und umblätterndes zwanghaftes Lecken der Finger und das Umblättern der Seiten von Büchern und Zeitschriften bezeichnet wird.

Zu den Gesichts- und Körpermerkmalen gehören Kleinwuchs, heisere Stimme, ein breites und eckiges Gesicht, tiefliegende Augen, volle Wangen, hervorstehender Unterkiefer, nach unten gerichteter Mund und eine abgeflachte Gesichtsmitte und Nasenrücken.

Andere Gesundheitszustände können Zahnanomalien, Skoliose, Kurzsichtigkeit und eine verminderte Schmerz- und Temperaturempfindlichkeit sein.

Mögliche klinische Merkmale/Merkmale:
Kurze Nase, neurologische Sprachstörung, Myopie, antevertierte Nasenlöcher, Mikrognathie, morphologische Anomalie des Mittelohrs, geistige Behinderung, mandibuläre Prognathie, anormale Form der Wirbelkörper, anormale Nierenlokalisation, anormale Nierenmorphologie, autosomal-dominante Vererbung, Otitis media, Stereotypie, Pes planus, Zehensyndaktylie, Fettleibigkeit, offener Mund, Handpolydaktylie, Taurodontie, Krampfanfall, Selbstverstümmelung, vorzeitige Pubertät, velopharyngeale Insuffizienz, breiter Nasenrücken, breites Gesicht, Brachyzephalie, breite Handfläche, Gaumenspalte, Anomalie des Kehlkopfes, Anomalie des Immunsystems, Anomalie des Genitalsystems, Anomalie des Unterarms, Anomalie des Außenohrs, Anomalie des Harnleiters, Anomalie der tracheobronchialen Morphologie, Anomalie der Zunge, Aplasie/Hypoplasie des Corpus callosum, Areflexie, Aufmerksamkeitsdefizit-Hyperaktivität Störung, heisere Stimme, breite Stirn, Hypercholesterinämie, Hyperakusis, Gangstörung, depressive Nasennebenhöhlenentzündung al-Brücke, verallgemeinerte h

Wie wird jemand getestet? Smith-Magenis syndrome (SMS)?

Die ersten Tests für das Smith-Magenis-Syndrom können mit einem Screening der Gesichtsanalyse über die FDNA Telehealth Telegenetics-Plattform beginnen, mit der die Schlüsselmarker des Syndroms identifiziert und die Notwendigkeit weiterer Tests aufgezeigt werden können. Eine Konsultation mit einem genetischen Berater und dann einem Genetiker wird folgen. 

Basierend auf dieser klinischen Konsultation mit einem Genetiker werden die verschiedenen Optionen für Gentests geteilt und die Zustimmung für weitere Tests eingeholt.

Medizinische Informationen zu Smith-Magenis Syndrom

This is a microdeletion syndrome involving chromosome 17p11.2. Greenberg et al., (1991) estimates the incidence to be 1 in 25000. Struthers et al., (2002) screened 1205 patients with mental retardation/developmental delay and found two patients with a 17p11.2 microdeletion. They estimated the prevalence of Smith Megenis syndrome in the population to between 1 in 40,000 and 1 in 60,000. The features are variable, but it is probably the behaviour pattern which might suggest the diagnosis (Smith et al., 1998). Self-destructive behaviour with exotic and unpronounceable names characterises the behaviour profile, such as onychotillomania (they pull out their nails) and polyebolokoilamania (the insertion of foreign bodies into their orifices). Some children bang their heads and bite their wrists with disturbing ferocity. Many patients have a disturbed sleep pattern, either having difficulty falling asleep or staying asleep, causing major problems for the parents (Smith et al., 1998). De Leersnyder et al., (2003) discussed the use of beta1-adrenergic antagonists and melatonin in treatment of the sleep disorders in this condition. Despite this, as infants, the children are often described as 'perfect babies' as they do not cry. Other characteristic behaviour patterns include 'self-hugging' and rapidly licking the fingers and turning the pages of a book. Expressive language is delayed and it can be very helpful for the children to be taught sign language before speech develops at a later age. Dysmorphically they sometimes resemble children with Prader-Willi syndrome, ie. short and plump, and brachydactyly is a useful sign. Barnicoat et al., (1996) reported a case with an unusual form of iris dysgenesis. Wong et al., (2003) reported a case with a large VSD and a right sided aorta with a patent ductus arteriosus. Babovic-Vuksanovic et al., (1998) reported a 20 year old man with the condition with macular disciform scars. Greenberg et al., (1996) provide a good review of the clinical features. Hearing impairment was present in 68%, scoliosis in 65%, ventriculomegaly in 52%, cardiac abnormalities 37%, renal anomalies (especially duplication of the collecting system) 37% and low immunoglobulin levels in 23%. Moyamoya disease has been reported (Girirajan et al., 2007) as has West syndrome (Hino-Fukuyo et al., 2009).
The chromosomal region involved is that duplicated in Charcot-Marie-Tooth disease type IA, and absent tendon reflexes have suggested that they have a neuropathy. Chen et al., (1996) report the eye findings in 28 cases. However, there is little EMG or nerve conduction velocity evidence for this. Zhao et al., (1995) reported that a gene for a human microfibril-associated glycoprotein is commonly involved in the deletion. Smith et al., (2002) showed that hypercholesterolaemia is more common in children with the condition and could be used as a biochemical marker.
Juyal et al., (1996) reported a case with mosaicism.
Chen et al., (1997) showed that the mechanism of deletion in many cases involves homologous recombination between flanking repeat gene clusters.
Potocki et al., (2000) reported seven unrelated patients with de novo duplications of the Smith-Magenis syndrome region. It was proposed that this was the reciprocal of the Smith-Magenis deletion, generated by unequal crossing over. This appeared to only occur on the paternal chromosome. Physical features including mild to moderate developmental delay, short stature, autistic-hyperactive, or attention deficit disorders, and in some cleft palate, and hypotonia were noted. In general, the features were milder than those seen in Smith-Magenis syndrome.
Potocki et al., (2000) presented evidence for circadian rhythm abnormalities of melatonin, perhaps explaining the disturbed sleep pattern in these patients.
Natacci et al., (2000) reported a 25 year-old female with Smith-Magenis syndrome, but in addition, with a hypoplastic cerebellar vermis, hypotonia, ataxic gait, and an abnormal respiratory pattern resembling Joubert syndrome. Molecular studies showed a larger than normal 17p11 deletion extending towards the telomere. The authors suggest a possible gene for Joubert syndrome at 17p11.2.
Slager et al., (2003) identified frameshift mutations leading to protein truncation in RAI1 in three individuals with phenotypic features but no detectable 17p11.2 deletion. This is a novel gene whose role is unclear. Further cases with RA11 point mutations, were reported by Bi et al., (2004) and Vlangos et al., (2005) and Bi et al., (2006). RA11 is the retinoic acid induced 1 gene, that is involved in transcriptional control. In a study of 52 individuals referred for a phenotype consistent with Smith-Magenes for whom no 17p11.2 deletion could be found, two cases were found to have overlapping 2q37 deletions (Williams et al., 2010). Four further patients were also found to have this and the gene involved was HDAC4. The mutation also results in reduced expression of RAI1 which causes Smith-Magenis.
There is an excellent review of the condition by Gropman et al., (2006).
Yuan et al., (2016) described six patients with Smith-Magenis syndrome, harbouring contiguous gene deletions encompassing both PMP22 and RAI1 genes. Common features included motor delay, intellectual disability, behavioural problems (seizures, sleep disturbance) and ocular abnormalities (myopia, strabismus, iris abnormalities and retinal detachment). Typical physical features included short stature, brachycephaly, midface hypoplasia, broad nasal bridge, prognathism, tented upper lip, broad and square face, synophrys, brachydactyly, scoliosis, foot deformities and abnormal gait. Additional features included feeding difficulties and hypotonia at infancy, congenital heart malformation and otolaryngologic anomalies. Two out of six patients were diagnosed with hereditary neuropathy with liability to pressure palsies. Brain MRI in one patient showed moderate hydrocephalus and in another patient the prominence of the ventricular system.
Acquaviva et al., (2016) described for the first time a familial case of Smith Magenis syndrome. They identified a frameshift mutation in RAI1 in the mother and the daughter. The mutation was de novo in the mother. The mother graduated from a professional institute with an assistant teacher. She needed constant support in the daily routine and decision-making processes.
Yeetong et al., (2016) reported a girl without deletion in the 17p11.2 and a de novo nonsense mutation in the RAI1 gene."

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Erhalten Sie eine schnellere und genauere Genetische Diagnostik!

Mehr als 250,000 Patienten erfolgreich analysiert!
Warten Sie nicht Jahre auf eine Diagnose. Handeln Sie jetzt und sparen Sie wertvolle Zeit.

Los geht's!

"Unser Weg zu einer Diagnose seltener Krankheiten war eine 5 -jährige Reise, die ich nur als Versuch beschreiben kann, einen Roadtrip ohne Karte zu unternehmen. Wir kannten unseren Ausgangspunkt nicht. Wir kannten unser Ziel nicht. Jetzt haben wir Hoffnung. "

Bild

Paula und Bobby
Eltern von Lillie

Was ist FDNA Telehealth?

FDNA Telehealth ist ein führendes Unternehmen für digitale Gesundheit, das einen schnelleren Zugang zu genauen genetischen Analysen bietet.

Mit einer von führenden Genetikern empfohlenen Krankenhaustechnologie verbindet unsere einzigartige Plattform Patienten mit Genexperten, um ihre dringendsten Fragen zu beantworten und eventuelle Bedenken hinsichtlich ihrer Symptome zu klären.

Vorteile von FDNA Telehealth

FDNA-Symbol

Credibility

Unsere Plattform wird derzeit von über 70% der Genetiker verwendet und wurde zur Diagnose von über 250,000 Patienten weltweit eingesetzt.

FDNA-Symbol

Barrierefreiheit

FDNA Telehealth bietet innerhalb von Minuten eine Gesichtsanalyse und ein Screening, gefolgt von einem schnellen Zugang zu genetischen Beratern und Genetikern.

FDNA-Symbol

Benutzerfreundlichkeit

Unser nahtloser Prozess beginnt mit einer ersten Online-Diagnose durch einen genetischen Berater, gefolgt von Konsultationen mit Genetikern und Gentests.

FDNA-Symbol

Genauigkeit & Präzision

Erweiterte Funktionen und Technologien für künstliche Intelligenz (KI) mit einer Genauigkeitsrate von 90% für eine genauere genetische analyse.

FDNA-Symbol

Preis-Leistungs-Verhältnis

Schnellerer Zugang zu genetischen Beratern, Genetikern, Gentests und einer Diagnose. Falls erforderlich, innerhalb von 24 Stunden. Sparen Sie Zeit und Geld.

FDNA-Symbol

Privatsphäre & Sicherheit

Wir garantieren den größtmöglichen Schutz aller Bilder und Patienteninformationen. Ihre Daten sind immer sicher und verschlüsselt.

FDNA Telehealth kann Sie einer Diagnose näher bringen.
Vereinbaren Sie innerhalb von 72 Stunden ein Online-Treffen zur genetischen Beratung!

EspañolDeutschPortuguêsFrançaisEnglish