Temple syndrome

Was ist Temple syndrome?

Es ist eine seltene Genetik syndrom das präsentiert mit einer Vielzahl von symptome. Diese symptome Dazu gehören Wachstumsverzögerung, Probleme mit der Nahrungsaufnahme, Verzögerung der motorischen Entwicklung und einzigartige Gesichtszüge.

Das syndrom tritt bei weniger als 1 von 1 Millionen Lebendgeburten auf. Das syndrom wurde erst vor kurzem entdeckt und die Forschung ist noch im Gange.

Was Genveränderungen verursachen Temple syndrome?

Das syndrom wird als Prägestörung bezeichnet. Sie wird durch Veränderungen der Gene auf Chromosom 14 verursacht.

Das syndrom wird autosomal-dominant vererbt oder ist das Ergebnis einer de novo-Mutation und der erste Fall in einer Familie.

Was sind die wichtigsten symptome von Temple syndrome?

Einer der wichtigsten symptome des syndrom ist Wachstumsverzögerung - sowohl vor als auch nach der Geburt. Darauf folgen in der Regel Ernährungsschwierigkeiten im Säuglingsalter sowie ein geringer Muskeltonus und eine verzögerte motorische Entwicklung. In einigen Fällen ist eine geistige Behinderung auch ein Zeichen für die syndrom.

Einzigartige Gesichtsmerkmale des syndrom gehören eine vorstehende Stirn, eine Ufernase mit breiter Spitze, nach unten gerichtete Mundwinkel, ein kleiner Kiefer und ein hoher Gaumen.

Sonstiges symptome Dazu gehören Fettleibigkeit, die in der Kindheit auftritt, vorzeitige Pubertät und Knochenanomalien, die andere einzigartige körperliche Merkmale wie kleine Hände und Füße umfassen.

Mögliche klinische Merkmale/Merkmale:
Verminderte Hodengröße, Kryptorchismus, Flexionskontraktur, Eingedrückter Nasenrücken, Fütterschwierigkeiten im Säuglingsalter, Klein für das Gestationsalter, Rezidivierende Mittelohrentzündung, Nach hinten rotierte Ohren, Kurzer Fuß, Hypertriglyceridämie, Hypercholesterinämie, Hydrozephalus, Hoher Gaumen, Verzögerte Sprach- und Sprachentwicklung, Relativ Makrozephalie, Frontal Bossing, Prominent Stirn, Klinodaktylie, Kurzes Philtrum, Kleine Hand, Skoliose, Truncal Adipositas, Frühgeburt, Gaumenspalte, Weite Nase, Zäpfchen Bifid, Antevertierte Nasenlöcher, Altersdiabetes bei jungen Menschen, Mikrognathie, Muskelhypotonie, Gelenk Hypermobilität

Wie wird jemand getestet? Temple syndrome?

Die ersten Tests für Temple syndrome kann mit einem Gesichtsanalyse-Screening beginnen, durch die FDNA Telehealth Telegenetik-Plattform, die die Schlüsselmarker der syndrom und skizzieren Sie die Notwendigkeit weiterer Tests. Es folgt ein Beratungsgespräch mit einem genetischen Berater und dann einem Genetiker. 

Basierend auf dieser klinischen Konsultation mit einem Genetiker werden die verschiedenen Optionen für Gentests geteilt und die Zustimmung für weitere Tests eingeholt.

Medizinische Informationen zu Temple syndrome

The hallmarks of a maternal UPD 14 are a mild mental delay, short stature (low birthweight) , relatively or absolute large head, precocious puberty, and small hands and feet. Hypotonia and early feeding difficulties are common. Weight gain occurs in early childhood.
Temple et al., (1991) demonstrated chromosome 14 maternal disomy, secondary to a 13;14 translocation, in a 17-year-old male. He had short stature, normal intelligence, hydrocephalus, a cleft uvula, premature puberty, but small testes. Pentao et al., (1992) reported a 20-year-old female with maternal 14 isodisomy due to a de novo 14;14 translocation. She also had short stature and premature puberty. Of interest was the fact that the patient also had rod monochromacy.
Antonarakis et al., (1993) reported a 9-year-old girl with maternal disomy for chromosome 14 secondary to a de novo 13;14 chromosome translocation. The clinical picture was somewhat confused because 5% of blood lymphocytes were found to have mosaic trisomy 14, but the patient did have short stature, mild developmental delay, scoliosis, and spontaneously resolving hydrocephalus, in common with the previously reported cases. Sirchia et al., (1994) reported a 22-week fetus terminated because of the finding of mosaic trisomy 14. Studies revealed that the disomic cell line showed maternal heterodisomy with a large isodisomic segment in the telomeric region. Unfortunately, no phenotypic details of the fetus were given. Healey et al., (1994) reported a further case with communicating hydrocephalus, short stature, developmental delay and hyperextensible joints. This 4 1/2-year-old girl also had sparse hair and small hands. Papenhausen et al., (1995) reported a normal adult female with maternal 14 disomy with a balanced (14;14) translocation. Tomkins et al., (1996) reported a 12 year old male with maternal uniparental isodisomy with a 14q isochromosome. His height, weight and head circumference were all above the 98th centile. He had precocious puberty. Coviello et al., (1996) reported a similar case. Affected children may be obese. A further case was reported by Penman Splitt and Goodship (1997) who provide a summary of the five other cases in the literature up to that date. Georgiades et al., (1998) attempted to correlate the features of chromosome 14 uniparental disomy with trisomy for different segments of chromosome 14. There were some fairly minimal correlations. Berends et al., (1999) reported two cases originally referred with a diagnosis of Prader-Willi syndrome. Hordijk et al., (1999) reported a further case with some features of Prader-Willi syndrome. Martin et al., (1999) reported a three and half year old girl with maternal uniparental disomy confined to the 14q23-24 segment. The patient had mild developmental delay with a large head size but a normal CT scan. There were generalised hypotonia and joint laxity. Height was on the 25th centile. Disomy for chromosome 14 was looked for because of the triad of macrocephaly, developmental delay and joint laxity. Ralph et al., (1999) reported a fetus in whom trisomy 14 was found in a CVS sample and the fetus subsequently apparently had maternal isodisomy 14. The fetus died in utero at 18 weeks without clear pathological features. Miyoshi et al., (1998) reported a 9-month-old Japanese boy with an isochromosome 14q resulting in maternal uniparental disomy. He had a low birthweight, hypotonia and failure to thrive. There was dolichocephaly, frontal bossing, low-set ears, a short neck, small hands and feet and overlapping fingers. There was also a patent ductus arteriosus.
Manzoni et al., (2000) reported a 19 year old male with maternal chromosome 14 UPD secondary to i(14)(q10) who had maturity-onset diabetes of the young (MODY) with mild short stature, dolichocephaly, a high arched palate, hypoplasia of the ear helix, synophrys, a prominent nasal bridge, brachydactyly and 5th finger clinodactyly. Sanlaville et al., (2000) reported a four-year-old girl with maternal UPD 14 which was shown to be secondary to trisomic rescue after a maternal meiosis I error. There were only short stature, small hands and feet and mild developmental delay. The authors provide a good review of other cases with maternal UPD 14. Eggermann et al., (2001) reported a case of interstitial 14q13-14q31 maternal disomy. Birthweight and length were below the 3rd centile but head circumference was below the 50th centile. There was ""a large fontanelle, a snub nose, and low-set, malrotated ears"". ""The mandible was hypoplastic and retracted"". There was developmental delay of 1 to 2 months at the age of 6 months. There was poor feeding and the patients failed to thrive despite a high caloric intake. He died at the age of 6 months from aspiration pneumonia. Kotzot (2001) reviewed evidence for different imprinted regions on human chromosome 14. Mignon-Ravix et al., (2001) reported a family segregating for a 14q31 duplication. This was maternally inherited in five family members. In the proband, there were minor dysmorphic features and psychomotor delay associated with behavioural and sleep disturbance. However, the authors felt that this was unrelated to the duplication, in view of the fact that other family members were phenotypically normal. Kayashima et al., (2002) reported a 20-year-old man with maternal isodisomy for 14q21-q24 who developed maturity onset diabetes. Eggermann et al., (2002) provide a good clinical review of the effects of disomy and the indications for testing. Ionnides et al., (2014) have reviewed 51 cases of this short stature, low birth weight, hypotonia and early puberty syndrome. Obesity occurred in about 50% of cases and intelligence was mildly reduced. However see Coveler et al., (2003) who carried out further microsatellite analysis on this case and could not find convincing evidence of segmental heterodisomy. Dietz et al., (2003) could find no cases out of 200 cases referred for Prader-Willi screening. A useful comparison of mUPD14 and Prader-Willi syndrome is provided by Aretz et al., (2005). A useful comparison of mUPD14 and Prader-Willi syndrome is provided by Aretz et al., (2005). The condition is excellently reviewed (including descriptions of 10 new patients by Mitter et al., 2006).
Ioannides et al. (2014) reviewed 51 published Temple syndrome cases, finding 40 due to maternal uniparental disomy, six due to epimutation and five due to paternal deletion. In order of frequency, clinical characteristics included small feet, hypotonia, small hands, low birth weight, early onset puberty, motor developmental delay, postnatal short stature, IUGR, hyperextensible joints, speech delay, feeding difficulties and obesity. Dysmorphic features, in order of frequency, were frontal bossing or prominent forehead, high palate, micrognathia, recurrent otitis media, short philtrum, and clinodactyly.
Briggs et al. (2016) reported a female with Temple syndrome due to an epigenetic loss of methylation at IG-DMR/MEG3-DMR locus. Clinical features were intrauterine growth retardation, low birth weight, hypotonia, and poor feeding in the neonatal period. In early childhood, she showed failure to thrive and developmental delay. She had premature puberty with short stature and truncal obesity. Intelligence was normal. The authors reviewed previously published cases. It was not possible to differentiate between patients with epigenetic aberrations and those with maternal UPD 14 or a paternal deletion. Most patients had low birth weight, neonatal hypotonia with poor feeding, short stature, truncal adiposity developing in childhood. Facial dysmorphic features included frontal bossing, a fleshy nasal tip, short philtrum, high palate and micrognathia. The patients had early and puberty, resulting in reduced final height.
Zhang et al. (2016) described a male patient with Temple syndrome due to a mosaic trisomy of chromosome 14, cytogenetic analysis revealed 47,XX, +14[1]/46,XX[99], and SNP’s revealed that 14q11.2q22.3 and 14q32.2qter segments were maternal isodisomic, and the other regions of chromosome 14 were maternal heterodisomic. Clinical characteristics included IUGR, polyhydramnios, developmental delay, intellectual disability, hypotonia, growth hormone deficiency, delayed bone age, short stature, truncal obesity, scoliosis, small hands and feet, fifth finger clinodactyly, barrel chest, body asymmetry, cryptorchidism, and hyperpigmented skin patches. Dysmorphic features were hypertelorism, narrow palpebral fissures, and depressed nasal bridge.
Luk (2017) described a female patient with Temple syndrome and ring chromosome 14 arr[hg19] 14q11.2q22.1(20 483 247–52 205 241)×2–3. Clinical features included IUGR, failure to thrive, developmental delay, precocious puberty, and scoliosis. Dysmorphic features were short, anteverted nostrils, depressed nasal bridge, broad nasal tip and relatively small hands and feet.
Kagami et. al. (2017) diagnosed 32 patients with Temple syndrome due to either maternal 14q32 uniparental disomy (23), epimutations (6) or microdeletions (3). Nineteen individuals were from a large cohort of patients with clinical diagnosis of either Prader-Willi syndrome or Silver-Russell syndrome (molecularly negative). Most frequent clinical characteristics included postnatal growth failure (94%), small hands and feet (91%), prenatal growth failure (84%), precocious puberty (76%), hypoplastic placenta (71%), hypotonia with poor suck (68%), prominent forehead (63%), feeding difficulties (63%), relative macrocephaly at birth (52%), high arched palate (52%), and PWS or SRS-like phenotypes in infancy (50%).

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Erhalten Sie eine schnellere und genauere Genetische Diagnostik!

Mehr als 250,000 Patienten erfolgreich analysiert!
Warten Sie nicht Jahre auf eine Diagnose. Handeln Sie jetzt und sparen Sie wertvolle Zeit.

Los geht's!

"Unser Weg zu einer Diagnose seltener Krankheiten war eine 5 -jährige Reise, die ich nur als Versuch beschreiben kann, einen Roadtrip ohne Karte zu unternehmen. Wir kannten unseren Ausgangspunkt nicht. Wir kannten unser Ziel nicht. Jetzt haben wir Hoffnung. "

Bild

Paula und Bobby
Eltern von Lillie

Was ist FDNA Telehealth?

FDNA Telehealth ist ein führendes Unternehmen für digitale Gesundheit, das einen schnelleren Zugang zu genauen genetischen Analysen bietet.

Mit einer von führenden Genetikern empfohlenen Krankenhaustechnologie verbindet unsere einzigartige Plattform Patienten mit Genexperten, um ihre dringendsten Fragen zu beantworten und eventuelle Bedenken hinsichtlich ihrer Symptome zu klären.

Vorteile von FDNA Telehealth

FDNA-Symbol

Credibility

Unsere Plattform wird derzeit von über 70% der Genetiker verwendet und wurde zur Diagnose von über 250,000 Patienten weltweit eingesetzt.

FDNA-Symbol

Barrierefreiheit

FDNA Telehealth bietet innerhalb von Minuten eine Gesichtsanalyse und ein Screening, gefolgt von einem schnellen Zugang zu genetischen Beratern und Genetikern.

FDNA-Symbol

Benutzerfreundlichkeit

Unser nahtloser Prozess beginnt mit einer ersten Online-Diagnose durch einen genetischen Berater, gefolgt von Konsultationen mit Genetikern und Gentests.

FDNA-Symbol

Genauigkeit & Präzision

Erweiterte Funktionen und Technologien für künstliche Intelligenz (KI) mit einer Genauigkeitsrate von 90% für eine genauere genetische analyse.

FDNA-Symbol

Preis-Leistungs-Verhältnis

Schnellerer Zugang zu genetischen Beratern, Genetikern, Gentests und einer Diagnose. Falls erforderlich, innerhalb von 24 Stunden. Sparen Sie Zeit und Geld.

FDNA-Symbol

Privatsphäre & Sicherheit

Wir garantieren den größtmöglichen Schutz aller Bilder und Patienteninformationen. Ihre Daten sind immer sicher und verschlüsselt.

FDNA Telehealth kann Sie einer Diagnose näher bringen.
Vereinbaren Sie innerhalb von 72 Stunden ein Online-Treffen zur genetischen Beratung!

EspañolDeutschPortuguêsFrançaisEnglish