Marfan syndrome (MFS)

¿Que es Marfan syndrome (MFS)?

Marfan síndrome es un trastorno genético que afecta principalmente al tejido conectivo del cuerpo. El tejido conectivo se puede encontrar en todo el cuerpo, lo que significa que síndrome También puede afectar a muchas partes diferentes del cuerpo.

Síntomas puede variar entre los pacientes de la síndrome pero involucran principalmente tres sistemas: esquelético, ocular y cardiovascular.

El síndrome es congénito pero no todo síntomas y las características pueden ser obvias al nacer. Algunos se vuelven más evidentes en la infancia o, incluso en algunos casos, en la edad adulta.

Marfan síndrome ocurre aproximadamente en 1 de cada 5,000 personas.

Síndrome Sinónimos:
Marfan Síndrome, Tipo i; Mfs1 MFS

¿Qué causan los cambios genéticos Marfan syndrome (MFS)?

Las mutaciones en el gen FBN1 del cromosoma 15 causan el trastorno. El síndrome se hereda en el 75% de los casos, mientras que el 25% restante de los casos registrados se debe a mutaciones genéticas espontáneas.

En el caso de la herencia autosómica dominante, solo uno de los padres es el portador de la mutación genética y tiene un 50% de posibilidades de transmitirla a cada uno de sus hijos. Los síndromes heredados en una herencia autosómica dominante son causados por una sola copia de la mutación genética.

En algunos casos, un síndrome genético puede ser el resultado de una mutación de novo y el primer caso en una familia. En este caso, se trata de una nueva mutación genética que se produce durante el proceso reproductivo.

¿Cuales son los principales síntomas de Marfan syndrome (MFS)?

Individuos con el síndrome Suelen ser altos y delgados con brazos, piernas y dedos largos. Síntomas puede variar entre individuos, pero la escoliosis y las articulaciones hiperflexibles son comunes síntomas.

Otras condiciones de salud incluyen defectos cardíacos graves, así como problemas que afectan los ojos, los huesos y el recubrimiento de la médula espinal. Existen criterios clínicos específicos propuestos para la síndrome y esto incluye una evaluación cardiovascular con ecocardiograma.

Posibles rasgos / características clínicas:
Desprendimiento de retina, Insuficiencia cardíaca congestiva, Fisuras palpebrales inclinadas hacia abajo, Ectopia lentis, Ectasia dural, Enfisema, Ojo hundido, Esotropía, Dolicocefalia, Contractura en flexión, Exotropía, Aplanamiento malar, Apiñamiento dental, Disminución de la masa muscular, Disminución de la grasa subcutánea, Dilatación de la arteria pulmonar, Calcificación del anillo mitral, Osteoartritis prematura, Protrusio acetábulo, Espondilolistesis, Prolapso de la válvula tricúspide, Aneurisma de la raíz aórtica, Insuficiencia aórtica, Disección aórtica, Aracnodactilia, Dilatación de la aorta ascendente, Catarata, Herencia autosómica dominante, Retrocavotoracia, Pnegroworax, Pnegrowinatuminax , Pes plano, Striae distensae, Estatura alta, Aumento de la longitud axial del globo, Paladar estrecho, Miopía, Insuficiencia mitral, Prolapso de la válvula mitral, Cara estrecha, Cara larga, Micrognatia, Pectus excavatum, Rotación medial del maléolo medial, Hipermovilidad articular, Cifoescoliosis, hipoplasia del iris, paladar alto, dedo en martillo, herni incisional a, Genu recurvatum, Glaucoma

¿Cómo se hace la prueba a alguien? Marfan syndrome (MFS)?

La prueba inicial para el síndrome de Marfan puede comenzar con la detección del análisis facial, a través de la plataforma de telegenética FDNA Telehealth, que puede identificar los marcadores clave del síndrome y describir la necesidad de más pruebas. Seguirá una consulta con un asesor genético y luego con un genetista. 

Con base en esta consulta clínica con un genetista, se compartirán las diferentes opciones para las pruebas genéticas y se buscará el consentimiento para realizar más pruebas.

Información médica sobre Marfan síndrome

Patients with this syndrome have a combination of dolichostenomelia, arachnodactyly, pectus deformities of the chest, mitral or aortic regurgitation, ectopia lentis, and mild joint laxity. Other evidence of a generalized connective tissue disorder may be present, such as scoliosis and skin striae. Marfan syndrome is caused by mutations in the FBN1 gene.

A dilated aortic root can usually be demonstrated by echocardiography, and aortic aneurysms can ensue. Shores et al., (1994) studied the effect of beta-adrenergic blockade and concluded it slowed the rate of aortic dilatation and reduced the development of complications from aortic rupture in some patients with Marfan syndrome.

Erkula et al., (2002) provide growth charts for individuals with Marfan syndrome. Very rarely, multiple cervical spine subluxations occur (Place and Enzenauer, 2006). A myopathy has occasionally been recorded (Behan et al., 2003), although poor muscle development is common. In the Behan et al., (2003) family, a muscle biopsy showed an abnormality in fibrillin immunoreactivity.

Some cases have dural ectasia, defined as a ballooning or widening of the dural sac, often associated with herniation of the nerve root sleeves out of the associated foraminae of the spine (Rose et al., 2000; Ahn et al., 2001). Patient 1, reported by Ades et al., (2006) had major, cranial, dura problems.

Ahn et al., (2000) discuss screening for this condition by MR and CT scans. Of 32 Marfan patients, 20 patients were found to have dural ectasia. These patients may have low back pain, headache, proximal leg pain, and weakness and numbness (Foran et al., 2005). Dural ectasia occurred in 78% of the cohort examined by Soylen et al., (2009). Hispanic families might have few skeletal manifestations (Villamizaret al., 2010).

There have been about 10 case reports (van den Berg et al., 1996) of cerebral aneurysms in Marfan syndrome, but the association is doubted by some (van den Berg et al., 1996).

Multisegment colobomas have also been reported (LeBlanc et al., 2014).

Dental pulp calcification might be fairly frequent in those older than 30 years (Bauss et al., 2008).

Average life expectancy is halved. Ninety-five percent of deaths are due to a cardiovascular cause. Gray et al., (1998) studied life expectancy in British patients. Mean age of death was 45.3 years. Fifty percent median cumulative survival was 53 years for males and 72 years for females.

The condition has been shown to be caused by mutations in the fibrillin-1 gene (FBN1) on chromosome 15 (see Tsipouras et al., (1992) for review). Gray et al., (1994) estimated a prevalence of 1 in 14,000 in Scotland. Twenty-seven percent of cases appeared to be new mutations. Most mutations are unique to individual families. Hayward et al., (1997) screened all 65 exons of the gene and found mutations in 78% of well-characterized familial cases but only about 20% of sporadic cases. Intragenic markers can be used for predictive testing (Rantamaki et al., 1994; Pereira et al., 1994), however, care must be taken because of possible genetic heterogeneity (for example, see Boileau et al., 1993).

Dietz and Pyeritz (1995) provide a good review of mutations in the fibrillin gene in Marfan syndrome. Collod-Beroud et al., (1997) have published a database of mutations in the FBN1 gene in Marfan syndrome.

Rantamaki et al., (1999) provided evidence for parental germ-line mosaicism in a family. A further family with paternal somatic mosaicism was reported by Collod-Beroud et al., (1999).

Liu et al., (1998) reported a 76% detection rate for mutations using denaturing high-performance liquid chromatography. Toudjarska et al., (2001) described a comprehensive approach to the molecular diagnosis of Marfan syndrome that relied on direct analysis of the FBN1 gene at the cDNA level.

Diagnosis by assessment of fibrillin immunofluorescence on skin biopsies or fibroblast cultures is still technically difficult, and the accuracy is not certain (Schaefer and Godfrey, 1995).

De Paepe et al., (1996) discuss the diagnostic criteria. Rose et al., (2000) compare the ""Berlin"" and ""Ghent"" criteria for diagnosis, stressing the importance of looking for dural ectasia in some cases. These ectasias sometimes leak CSF, causing postural headache (Rosser et al., 2005).

Thomas et al., (1996) conclude that the metacarpal index is not a good diagnostic test.

Lipscomb et al., (1997) report the experience of 36 women who had 91 pregnancies. Four had an aortic dissection relating to the pregnancy, and two others required aortic surgery following delivery. The incidence of obstetric complications did not exceed expectation.

Kilpatrick et al., (1996) reported preimplantation diagnosis of Marfan syndrome using linked markers. Note that expression can be very variable, and there might be an overlap with Ehlers-Danlos - kyphoscoliotic type (De Backer et al., 2007). Molecular studies might be needed to sort this out.

Schrijver et al., (1999) provide information on genotype-phenotype correlation in FBN1 mutations. Robinson and Godfrey (2000) and Tiecke et al., (2001) also provided a good review of FBN1 and FBN2 mutations.

Putnam et al., (1996) present data suggesting that cases with mutations in exons 25-27 of the FBN1 gene have relatively severe cardiac manifestations or the neonatal form.

Liu et al., (1996) reviewed cases with exon-skipping mutations of the FBN1 gene resulting in a fibrillin-1 chain lacking EGF-like domains. Lui et al., (1997) reported a further exon-skipping mutation. Many of these cases have the severe neonatal form of the disorder, and a dominant negative effect was postulated.

Schrijver et al., (2002) identified 34 cases with premature termination mutations of the FBN1 gene. In this group, joint hypermobility was more common, but lens dislocation and retinal detachment less common.

Ades et al., (2002) reported a three-generation family apparently segregating for a form of kyphoscoliosis with some skeletal features of Marfan syndrome but no heart defects. A mutation in the FBN1 gene (G1796E) was detected.

de Vries et al., (2007) reported two cousins with transient hypothyroidism, lens dislocation between one and three years of age, mitral valve prolapse, and aortic aneurysm in one. Neither had joint laxity nor striae, but both had high arched palates. Height in one was on the 60th percentile and on the 85th in the other (no pictures were published). There were mild features in one set of parents but not in the other. The cousins were homozygous for a c.1453C>T mutation.

Two patients with severe disease who are compound heterozygotes were reported by Van Dijk et al., (2009).

In an international study (1,013 probands), Faivre et al., (2007) found that mutations in exons 24-32 resulted in a more severe phenotype.

Loeys et al., (2010) have revised the Ghent nosology. They state that in the absence of family history, but in the presence of aortic root aneurysms and ectopia lentis, these two manifestations are sufficient for diagnosis.

A three-generation family reported by Potter et al., (2013) had C-terminal missense mutation - there were no eye signs.

Arnaud et al., (2016) performed sequencing of the FBN1 gene in 2,500 probands with Marfan syndrome. While 1,400 individuals carried a heterozygous mutation in this gene, four patients had homozygous mutations, and five had compound heterozygous mutations. None of the patients carried two premature termination codon mutations in the FBN1 gene. There was a large spectrum of severity of the disease in probands carrying two mutations, but none of them presented with extremely severe manifestations.

Lu et al., (2017) described a pair of siblings with Marfan syndrome diagnosed at the age of 26 years due to homozygous splice site mutations in the FBN1 gene. Clinical characteristics included aortic dilatation that required aortic graft with root replacement, bilateral ectopia lentis, and positive thumb and wrist signs. None had pectus deformity, scoliosis or striae. Parents of the siblings and the daughter of one of them had heterozygous mutations, and neither had skeletal or ocular signs.

Dordoni et al., (2017) described a male patient with a de novo 15q21.1 deletion of 2.17 Mb partly encompassing the FBN1 gene and another 13 genes. Clinical characteristics included developmental delay, motor clumsiness, joint hypermobility, asthma, mild aortic root ectasia (Z-score 2.5) and mild mitral valve regurgitation, slender build, widely spaced eyes, broad nasal bridge, prominent columella, microretrognathia, jaw deviation, short philtrum, and small ears with hypoplastic antihelix and earlobe. Skeletal features were pectus excavatum, scoliosis, asymmetry of the shoulder and pelvic girdles, winged scapulae, contractures, arachnodactyly of fingers and toes, and pes cavus. Mild hyperextensible skin and striae distensae were seen. An additional feature was lower limb dystonia.

Martínez-Quintana et al., (2017) described a female patient with Marfan syndrome due to a novel missense mutation in the FBN1 gene. The father demonstrated gonadal mosaicism. Patterning defects were present including extra phalanx at the first digit in the right hand and the fusion of scaphoid, lunate, and trapezium to trapezoid bones.

Becerra-Muñoz et. al. (2018) reviewed the clinical and molecular characteristics of 90 patients from 58 families. Patients with protein-truncating mutations had higher proportion of aortic events, whereas missense mutations were associated with a more benign course.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

¡Obtenga un Diagnóstico Genético más rápido y preciso!

Más de 250,000 pacientes analizados con éxito.
No espere años para recibir un diagnóstico. Actúe ahora y ahorre un tiempo valioso.

¡Empieza aqui!

"Nuestro camino hacia el diagnóstico de una enfermedad rara fue un viaje de 5 años que solo puedo describir como intentar hacer un viaje por carretera sin mapa. No sabíamos nuestro punto de partida. No sabíamos nuestro destino. Ahora tenemos esperanza ".

Imagen

Paula y Bobby
Padres de Lillie

¿Qué es FDNA Telehealth?

FDNA Telehealth es una empresa líder en salud digital que brinda un acceso más rápido a análisis genéticos precisos.

Con una tecnología hospitalaria recomendada por genetistas líderes, nuestra plataforma única conecta a los pacientes con expertos en genética para responder a sus preguntas más urgentes y aclarar cualquier inquietud que puedan tener sobre sus Síntomas.

Beneficios de FDNA Telehealth

Icono de FDNA

Credibility

Actualmente, nuestra plataforma la utilizan más del 70% de los genetistas y se ha utilizado para diagnosticar a más de 250,000 pacientes en todo el mundo.

Icono de FDNA

Accesibilidad

FDNA Telehealth ofrece análisis y exámenes faciales en minutos, seguidos de un acceso rápido a consejeros genéticos y genetistas.

Icono de FDNA

Facilidad de uso

Nuestro proceso comienza con un diagnóstico inicial en línea por parte de un consejero genético y sigue con consultas con genetistas y pruebas genéticas.

Icono de FDNA

Exactitud y precisión

Capacidades y tecnología de inteligencia artificial (IA) avanzadas con una tasa de precisión del 90% para un análisis genético más preciso.

Icono de FDNA

Valor por
Dinero

Acceso más rápido a consejeros genéticos, genetistas, pruebas genéticas y un diagnóstico. Tan rápido como en 24 horas si es necesario. Ahorre tiempo y dinero.

Icono de FDNA

Privacidad y seguridad

Garantizamos la máxima protección de todas las imágenes e información del paciente. Sus datos siempre están seguros, protegidos y encriptados.

Con FDNA Telehealth, se puede acercar a un diagnóstico.
¡Reserve ya su hora para la sesión de asesoramiento genético en línea, dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish