Prader-Willi syndrome (PWS)

¿Que es Prader-Willi syndrome (PWS)?

El síndrome de Prader-Willi es un trastorno genético que actualmente es la causa más común de obesidad infantil potencialmente mortal. En la infancia, las personas con la afección desarrollan un apetito insaciable que desencadena una alimentación excesiva crónica.

El síndrome ocurre en 1 en 15,000 nacidos vivos.

Sinónimos de síndrome:
Síndrome de Prader-labhart-willi, SPW

¿Qué causan los cambios genéticos Prader-Willi syndrome (PWS)?

En el 70% de los casos, una deleción en la copia paterna del cromosoma 15 en cada célula causa el síndrome. El 25% de los casos se debe a la duplicación del cromosoma 15 de la madre. El resto de los casos son causados por una translocación entre ambos cromosomas 15 y la posterior deleción de una porción. La afección suele ser el resultado de una mutación o evento aleatorio.

La herencia de microdeleciones ocurre cuando hay una deleción de varios genes en un cromosoma. El cromosoma específico en el que ocurren las deleciones determinará el síndrome que causan.

Normalmente heredamos una copia de cada par de cromosomas de cada padre biológico. En el caso de la disomía, ambas copias del par de cromosomas se reciben de uno de los padres y ninguna del otro. Esto también se conoce como disomía uniparental. Con la mayoría de los genes, esto no es un problema y no causará ningún problema médico o de salud. Sin embargo, cuando se trata de genes específicos, los problemas con la impronta genómica pueden causar síndromes genéticos específicos.

Genes, ubicaciones y modos de herencia:
SNORD115- 1, 15 q11. 2 - Microdeleción, disomía
SNORD116- 1, 15 q11. 2 - Microdeleción, disomía
NDN, 15 q11. 2 - Microdeleción, disomía
PWAR1, 15 q11. 2 - Microdeleción, disomía
HERC2, 15 q13. 1 - Microdeleción, disomía
SNRPN, 15 q11. 2 - Microdeleción, disomía
NPAP1, 15 q11. 2 - Microdeleción, disomía
MKRN3, 15 q11. 2 - Microdeleción, disomía
PWRN1, 15 q11. 2 - Microdeleción, disomía
MAGEL2, 15 q11. 2 - Microdeleción, disomía
IPW, 15 q11. 2 - Microdeleción, disomía

Número OMIM - 176270 (consulte la página de OMIM para obtener información actualizada)

¿Cuales son los principales síntomas de Prader-Willi syndrome (PWS)?

Los principales síntomas del síndrome de Prader-Willi en la infancia son hipotonía (bajo tono muscular), retraso del crecimiento y dificultades para alimentarse. En la infancia, estos síntomas se reemplazan con un apetito insaciable, exceso de comida crónico, obesidad y, a menudo, el desarrollo de diabetes tipo 2.

Las características faciales típicas del síndrome incluyen una frente estrecha, ojos en forma de almendra y una boca triangular. La baja estatura y las manos y pies pequeños también son características físicas comunes.

Otros síntomas incluyen genitales subdesarrollados tanto en hombres como en mujeres y pubertad retrasada o incompleta que a menudo resulta en infertilidad. La discapacidad intelectual leve-moderada es común, al igual que los problemas con los trastornos compulsivos y los problemas de conducta relacionados con la falta de control de los impulsos.

Posibles rasgos / características clínicas:
Retraso en el desarrollo del habla y el lenguaje, Hipoventilación, Hipotonía generalizada, Hipopigmentación generalizada, Exceso frontal del cabello, Hipopigmentación de la piel, Hipopigmentación del cabello, Hipogonadismo hipogonadotrópico, Labios menores hipoplásicos, Pie corto, Insuficiencia suprarrenal, Displasia de cadera, Estatura baja, Retraso global del desarrollo , Deficiencia de hormona del crecimiento, Polifagia, Hiperinsulinemia, Habla nasal, Hipermetropía, Cifosis, Osteoporosis, Oligomenorrea, Obesidad, Amenorrea primaria, Pubertad precoz, Psicosis, Sindactilia, Convulsiones, Fotosensibilidad cutánea, Mala coordinación motora gruesa, Mala coordinación motora fina, Mala succión, Hipoplasia escrotal, esotropía, hipoplasia del clítoris, dolicocefalia, ventriculomegalia, retraso motor, pubertad retrasada, sensación de dolor alterada, masa muscular disminuida, retraso del crecimiento en la infancia, criptorquidia, movimiento fetal reducido, comisuras bucales hacia abajo, infertilidad, micropene, osteopenia, intelectual discapacidad, miopía, bri nasal estrecho dge, palma estrecha

¿Cómo se hace la prueba a alguien? Prader-Willi syndrome (PWS)?

La prueba inicial para el síndrome de Prader-Willi puede comenzar con la detección de análisis facial, a través de la plataforma de telegenética FDNA Telehealth, que puede identificar los marcadores clave del síndrome y describir la necesidad de más pruebas. Seguirá una consulta con un asesor genético y luego con un genetista. 

Con base en esta consulta clínica con un genetista, se compartirán las diferentes opciones para las pruebas genéticas y se buscará el consentimiento para realizar más pruebas.

Información médica de Prader-Willi Síndrome

The cardinal features of this condition are well known. Severe hypotonia is usually present at birth, and feeding difficulties and failure to thrive may predominate in the first year of life. In the second year over-eating may begin, with subsequent obesity. Short stature, mental retardation, hypogonadism and small hands and feet complete the clinical picture. Average adult height in males is 155cm and in females 147cm (Holm et al., 1993). Nagai et al., (2000) provide growth curves for Prader-WIlli syndrome. Mental retardation is mild to moderate, although up to 10% of adults are said to have an IQ within the normal range (Greenswag, 1987). Excessive skin 'picking' and thick saliva have been noted as unusual signs. Fair hair and skin has been noted in many patients, especially those with a deletion of chromosome 15 (Lee et al., 1994, Spritz et al., 1997).
Growth hormone deficiency and precocious puberty have been reported (Crino et al., 2008) and repeated hypoglycemia with its consequences can add to the problem (Harrington et al., 2014).
Eiholzer et al., (2000) suggest that growth hormone improves motor development, but not speech development in Prader-Willi syndrome. Myers et al., (2000) studied 35 Prader-Willi children given growth hormone for 24 months and found that there was an increase in lean body mass, a decrease in percentage body fat and improvements in physical strength and agility. However, between 12 and 24 months the growth rate slowed. Eiholzer et al., (2003) suggested that a well-defined and easy-to-accomplish training program improves local body composition and has generalized effects on physical activity and capacity. A patient on growth hormone treatment who died suddenly was reported by van Vliet et al.,(2004). Unexpected death (hypothalamic dysfunction) must not be underestimated (Stevenson et al., 2004). Schrander-Stumpel et al., (2004), looked at the cause of death in 27 cases. In young children hypotonia and hypoventilation were risk factors. Rumination and aspiration, were contributary causes. No child was on growth hormone. Nagai et al., (2005) discussed the causes of sudden unexpected death and concluded that a respiratory dysregulation and hypothalamic dysunction may have been present in deceased PWS patients, and that growth hormone therapy may have led to obstructive respiratory disturbances. A patient reported by Wilson et al., (2006) developed respiratory distress whilst on growth hormone, and improved when therapy was stopped. Intractable metabolic acidosis resulting in death was reported by Zaglia et al., (2005). Nagai et al., (2006) mentioned that scoliosis was not induced by GH therapy, although a non-obese boy reported by Tokutomi et al., (2006), with severe scoliosis and respiratory distress, was on GH.
Ten patients over the age of 50 years were reported by Sinnema et al., (2012). Behavioral problems were common.
Vogels et al., (2003) studied 59 patients and found that six (15.7%) had experienced a psychotic episode. Five of these patients had uniparental disomy. Holm et al., (1993) present a good review of the consensus diagnostic criteria. Whittington et al., (2001) estimate the population prevalence to be 1 in 52,000, with a birth incidence of 1 in 29,000. The mean mortality rate was estimated to be 3% for all ages but about 7% above the age of 30. Smith et al., (2003) estimated the birth prevalence to be 1 in 25,000.
Fifty-five to seventy percent of patients can be shown to have a small, paternally-derived deletion of the proximal part of the long arm of chromosome 15 by cytogenetic analysis. Of cases without a cytogenetic deletion 40% have deletions detectable at the DNA level and 60% have maternal disomy for part or all of chromosome 15 (Mascari et al., 1992). Cassidy et al., (1997) provided evidence suggesting that cases with uniparental disomy were less likely to have a typical facial appearance or to show manifestations such as skin picking. Cases without evidence of 15q deletions or maternal disomy should be re-assessed clinically (Lai et al., 1993) (although Orstavik et al., (1992) reported a convincingly affected sib pair without 15q abnormalities). Smith-Magenis syndrome (17p-) should be considered where chromosome 15q studies are negative. Lammer et al., (2001) reported a child with features of Prader-Willi syndrome who was shown to have an Xq27.2->qter duplication.
Cassidy et al., (1992) reported a female infant with the clinical features of Prader-Willi syndrome where trisomy 15 had been demonstrated on a chorionic villus biopsy but cells from the infant showed a 46,XX karyotype with maternal disomy 15. Purvis-Smith et al., (1992) reported a similar case. Christian et al., (1996) studied three cases where mosaic trisomy 15 had been picked up at amniocentesis and four cases at CVS. One of the amniocentesis and one of the CVS cases was found to have uniparental disomy for chromosome 15. The authors recommend testing for uniparental disomy in all cases where mosaic trisomy 15 is encountered by CVS or amniocentesis. Olander et al., (2000) reported a boy with mosaic trisomy 15 associated with uniparental disomy 15. The phenotype was more severe than that usually seen in Prader-Willi syndrome.
Robinson et al., (1993) and Liehr et al., (2005) showed that in cases of Prader-Willi syndrome with an additional marker chromosome derived from 15, maternal uniparental disomy can be demonstrated. However Bettio et al., (1997) reported one case with a marker 15 not including the Prader-Willi region who had a 15q11-13 deletion and also a patient with a marker X chromosome and maternal uniparental disomy for chromosome 15. Mowery-Rushton et al., (1996) reported cases with mosaicism for deletions of 15q11-13. Hulten et al., (1991) reported a family where a balanced (15;22)(q13;q11) was segregating. Unbalanced paternal transmission of the derived 15 resulted in Prader-Willi syndrome, whereas maternal transmission resulted in Angelman syndrome. Toth-Fejel et al., (1996) reported two cases where cryptic translocations had apparently led to nondisjunction and secondary maternal disomy. The translocations involved heteromorphic satellite regions of chromosomes 14 and 15. High resolutions banding of chromosome 15 long arms was normal. The authors report that out of 50 PWS cases referred to the laboratory 3 (6%) had a translocation involving chromosome 15. Three families have been reported where normal individuals carrying a balanced chromosome 15 translocation involving 15q11-13 have had children with Prader-Willi or Angelman syndrome (Smeets et al., 1992; Horsthemke et al., 1996). The mechanism is a deletion, thought to be due to unequal crossing over involving the translocated chromosome with the 15 centromere. Devriendt et al., (1997) reported detailed molecular studies on a girl with mosaic trisomy 15 and mosaic XXX with features of Prader-Willi syndrome.
Ozcelik et al., (1992), Leff et al., (1992) and Glenn et al., (1993) showed that the small nuclear ribonuclear protein polypeptide N (SmN) gene (SNRPN) at 15q12 is imprinted in the mouse and Cattanach et al., (1992) showed that maternal disomy for the equivalent region on mouse chromosome 7 resulted in absence of SNRPN expression. Driscoll et al., (1992) identified parental differences in DNA methylation at the D15S9 locus, identified by the highly evolutionarily conserved cDNA, DN34. However, Buiting et al., (1993) demonstrated that the shortest region of deletion overlap in Prader-Willi syndrome does not include this locus, but does include the marker PW71 (D15S63) and the SNRPN gene. PW71 is subject to sex-specific methylation (Dittrich et al., 1993). Reed and Leff (1994) demonstrated maternal imprinting of the SNRPN gene in humans with Prader-Willi syndrome. Wevrick et al., (1994) identified a gene, IPW, from the Prader-Willi region. They suggested that this gene functions at the RNA level, similar to H19 and XIST. The gene was shown to be exclusively paternally expressed in fetal tissue and is located about 150 kb distal to SNRPN. Butler et al., (1996) reported a female case with a very small 100-200 kb deletion including the SNRPN gene but not the PW71 gene. She had clinical features of Prader-Willi syndrome but apparently no behaviour problems or hyperphagia, and borderline normal intelligence at the age of 6 years. Note Buiting et al., (1999) reported five families where there was a 28-kb deletion spanning the PW71 gene without pathological effect or abnormalities in imprinting. This appeared to be a neutral variant. Reis et al., (1994) reported abnormal maternal imprinting of paternal alleles at loci in the 15q11-q13 region in a small proportion of cases. Buiting et al., (1995) identified a putative imprinting centre proximal to the Prader-Willi syndrome critical region. Cases with deletion of this region on the paternal 15 had maternal-type imprinting. Ohta et al., (1999) studied further patients with imprinting mutations. Buiting et al., (1998) studied patients with Prader-Willi syndrome and Angelman syndrome with abnormalities of imprinting, but no evidence of a microdeletion of the imprinting centre. All cases were sporadic, and the authors suggested that these cases have a low recurrence risk. However note that Buiting et al., (2000) reported a normal male with two affected daughters with a microdeletion affecting the chromosome 15 imprinting centre.
Dittrich et al., (1996) identified novel transcripts of the SNRPN gene, lacking protein coding potential. Deletions in the SNRPN gene were found in three Prader-Willi cases. The authors suggest that deletion of exon 1 of the SNRPN gene are associated with a block of the maternal to paternal imprint switch. Bielinska et al., (2000) studied a male with a mosaic deletion of exon 1 of the SNRPN gene and showed that the deletion chromosome acquired a maternal methylation imprint in his somatic cells. Similar findings were also shown in chimeric mice. The studies demonstrated that the imprinting sensor element is not only required for the establishment of the paternal imprint, but also for its postzygotic maintenance. Kubota et al., (1996) provided data showing that SNRPN methylation analysis may be useful for prenatal diagnosis using CVS samples, but not PW71, in families known to carry imprinting centre defects. Glenn et al., (2000) confirm this from 24 cases of prenatal diagnosis of Prader-Willi and Angelman syndromes. Rogan et al., (1998) reported two cases with relaxation of imprinting. Although the SNRPN gene appeared to be imprinted, other imprinted genes in the region were normally expressed. The patients had a partial Prader-Willi phenotype. Wevrick and Francke (1996) reported a diagnostic test by looking at SNRPN expression by PCR analysis of reverse transcribed mRNA in leukocytes. MacDonald and Wevrick (1997) identified a gene necdin, which is deleted in Prader-Willi syndrome and is expressed exclusively from the paternally inherited allele. This makes it a good candidate for some of the features of Prader-Willi syndrome. Necdin codes for a nuclear protein expressed exclusively in differentiated neurons in the brain in the mouse. G‚rard et al., (1999) knocked out the necdin gene and showed that mice inheriting a paternal deletion had early post-natal lethality, whereas those inheriting a maternal deletion were normal.
de los Santos et al., (2000) identified a novel imprinted gene, PWCR1, mapping to the Prader-Willi deletion region. This gene was expressed only from the paternal allele and required the imprinting-centre regulatory element for expression. The gene was intronless and did not appear to encode a protein product. PWCR1 was highly expressed in the brain.
LaSalle and Lalande (1996) demonstrated association between maternal and paternal chromosome 15s during late S phase of mitosis. This was not present in cells from Angelman or Prader-Willi patients.
Schulze et al., (1996) reported a case with a translocation through the SNRPN gene with features of Prader-Willi syndrome. Methylation and expression studies suggested that the paternal SNRPN gene was unaffected and that sequences distal to the gene may be critical for the Prader-Willi phenotype. Sun et al., (1996) reported a patient with a de novo translocation through the SNRPN gene with features of Prader-Willi syndrome. The translocation was paternal in origin. Kuslich et al., (1999) reported a boy with a balanced translocation interrupting the second and third exons of the SNRPN gene. Wirth et al., (2001) studied another patient with a de novo balanced reciprocal translocation with one breakpoint in proximal 15q. They demonstrated a translocation breakpoint cluster between SNURF-SNRPN and IPW. Ishikawa et al., (1996) reported affected sibs with Prader-Willi syndrome who were apparently just deleted for SNRPN by FISH, but not GABRB3, or other probes in the Prader-Willi critical region. Surprisingly, no comment is made about FISH studies on the parents.
Coppes et al., (1993) reported a case with a paternal deletion of 15q11-q13 and associated Wilms' tumour. No deletion or disomy for 11p was found. Cassidy et al., (2000) provides a good review of the clinical and molecular features up to 2000.
Hassan et al. (2016) described a female with a rare atypical submicroscopic deletion involving imprinting center and encompassing the SNURF-SNRPN gene complex and adjacent non-coding RNA SNORD116. The authors compared her clinical findings to the findings of other individuals in the literature with similar atypically sized deletions without involvement of the imprinting center. Individuals with involvement of the minimal critical region had better growth and fewer cognitive problems.
Cao et al. (2017) described a female patient with a de novo 6.4 kb deletion in 15q11.2 region, encompassing SNURF/SNRPN genes and being the shortest deletion reported up to date associated with PWS phenotype.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

¡Obtenga un Diagnóstico Genético más rápido y preciso!

Más de 250,000 pacientes analizados con éxito.
No espere años para recibir un diagnóstico. Actúe ahora y ahorre un tiempo valioso.

¡Empieza aqui!

"Nuestro camino hacia el diagnóstico de una enfermedad rara fue un viaje de 5 años que solo puedo describir como intentar hacer un viaje por carretera sin mapa. No sabíamos nuestro punto de partida. No sabíamos nuestro destino. Ahora tenemos esperanza ".

Imagen

Paula y Bobby
Padres de Lillie

¿Qué es FDNA Telehealth?

FDNA Telehealth es una empresa líder en salud digital que brinda un acceso más rápido a análisis genéticos precisos.

Con una tecnología hospitalaria recomendada por genetistas líderes, nuestra plataforma única conecta a los pacientes con expertos en genética para responder a sus preguntas más urgentes y aclarar cualquier inquietud que puedan tener sobre sus Síntomas.

Beneficios de FDNA Telehealth

Icono de FDNA

Credibility

Actualmente, nuestra plataforma la utilizan más del 70% de los genetistas y se ha utilizado para diagnosticar a más de 250,000 pacientes en todo el mundo.

Icono de FDNA

Accesibilidad

FDNA Telehealth ofrece análisis y exámenes faciales en minutos, seguidos de un acceso rápido a consejeros genéticos y genetistas.

Icono de FDNA

Facilidad de uso

Nuestro proceso comienza con un diagnóstico inicial en línea por parte de un consejero genético y sigue con consultas con genetistas y pruebas genéticas.

Icono de FDNA

Exactitud y precisión

Capacidades y tecnología de inteligencia artificial (IA) avanzadas con una tasa de precisión del 90% para un análisis genético más preciso.

Icono de FDNA

Valor por
Dinero

Acceso más rápido a consejeros genéticos, genetistas, pruebas genéticas y un diagnóstico. Tan rápido como en 24 horas si es necesario. Ahorre tiempo y dinero.

Icono de FDNA

Privacidad y seguridad

Garantizamos la máxima protección de todas las imágenes e información del paciente. Sus datos siempre están seguros, protegidos y encriptados.

Con FDNA Telehealth, se puede acercar a un diagnóstico.
¡Reserve ya su hora para la sesión de asesoramiento genético en línea, dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish