Temple syndrome

¿Que es Temple syndrome?

Es una genética rara síndrome que presenta una variedad de síntomas. Estas síntomas incluyen retraso en el crecimiento, problemas con la alimentación, retraso en el desarrollo motor y rasgos faciales únicos.

El síndrome ocurre en menos de 1 de 1 millones de nacidos vivos. El síndrome fue descubierto recientemente y la investigación aún está en curso.

¿Qué causan los cambios genéticos Temple syndrome?

El síndrome se conoce como trastorno de la impronta. Es causada por cambios en los genes del cromosoma 14.

El síndrome se hereda con un patrón autosómico dominante o es el resultado de una mutación de novo y es el primer caso en una familia.

¿Cuales son los principales síntomas de Temple syndrome?

Uno de los principales síntomas del síndrome es un retraso en el crecimiento, tanto antes como después del nacimiento. Esto suele ir seguido de dificultades para alimentarse durante la infancia, así como de un tono muscular bajo y un retraso en el desarrollo motor. En algunos casos, la discapacidad intelectual también es un signo de síndrome.

Características faciales únicas del síndrome incluyen una frente prominente, una nariz de orilla con una punta ancha, comisuras de la boca hacia abajo, una mandíbula pequeña y un paladar alto.

Otro síntomas incluyen obesidad, que se presenta en la niñez, pubertad prematura y anomalías óseas que incluyen otras características físicas únicas como manos y pies pequeños.

Posibles rasgos / características clínicas:
Disminución del tamaño de los testículos, criptorquidia, contractura en flexión, puente nasal deprimido, dificultades de alimentación en la infancia, pequeño para la edad gestacional, otitis media recurrente, orejas en rotación posterior, pie corto, hipertrigliceridemia, hipercolesterolemia, hidrocefalia, paladar alto, retraso en el desarrollo del habla y el lenguaje, relativo macrocefalia, protuberancia frontal, frente prominente, clinodactilia, surco nasolabial corto, mano pequeña, escoliosis, obesidad troncal, parto prematuro, paladar hendido, nariz ancha, úvula bífida, narinas antevertidas, diabetes de inicio en la madurez de los jóvenes, micrognatia, hipotonía muscular, articulación hipermovilidad

¿Cómo se hace la prueba a alguien? Temple syndrome?

La prueba inicial para Temple syndrome puede comenzar con la detección del análisis facial, a través de la plataforma FDNA Telehealth de telegenética, que puede identificar los marcadores clave del síndrome y describa la necesidad de realizar más pruebas. Seguirá una consulta con un asesor genético y luego con un genetista. 

Sobre la base de esta consulta clínica con un genetista, se compartirán las diferentes opciones para las pruebas genéticas y se buscará el consentimiento para realizar más pruebas.

Información médica sobre Temple syndrome

The hallmarks of a maternal UPD 14 are a mild mental delay, short stature (low birthweight) , relatively or absolute large head, precocious puberty, and small hands and feet. Hypotonia and early feeding difficulties are common. Weight gain occurs in early childhood.
Temple et al., (1991) demonstrated chromosome 14 maternal disomy, secondary to a 13;14 translocation, in a 17-year-old male. He had short stature, normal intelligence, hydrocephalus, a cleft uvula, premature puberty, but small testes. Pentao et al., (1992) reported a 20-year-old female with maternal 14 isodisomy due to a de novo 14;14 translocation. She also had short stature and premature puberty. Of interest was the fact that the patient also had rod monochromacy.
Antonarakis et al., (1993) reported a 9-year-old girl with maternal disomy for chromosome 14 secondary to a de novo 13;14 chromosome translocation. The clinical picture was somewhat confused because 5% of blood lymphocytes were found to have mosaic trisomy 14, but the patient did have short stature, mild developmental delay, scoliosis, and spontaneously resolving hydrocephalus, in common with the previously reported cases. Sirchia et al., (1994) reported a 22-week fetus terminated because of the finding of mosaic trisomy 14. Studies revealed that the disomic cell line showed maternal heterodisomy with a large isodisomic segment in the telomeric region. Unfortunately, no phenotypic details of the fetus were given. Healey et al., (1994) reported a further case with communicating hydrocephalus, short stature, developmental delay and hyperextensible joints. This 4 1/2-year-old girl also had sparse hair and small hands. Papenhausen et al., (1995) reported a normal adult female with maternal 14 disomy with a balanced (14;14) translocation. Tomkins et al., (1996) reported a 12 year old male with maternal uniparental isodisomy with a 14q isochromosome. His height, weight and head circumference were all above the 98th centile. He had precocious puberty. Coviello et al., (1996) reported a similar case. Affected children may be obese. A further case was reported by Penman Splitt and Goodship (1997) who provide a summary of the five other cases in the literature up to that date. Georgiades et al., (1998) attempted to correlate the features of chromosome 14 uniparental disomy with trisomy for different segments of chromosome 14. There were some fairly minimal correlations. Berends et al., (1999) reported two cases originally referred with a diagnosis of Prader-Willi syndrome. Hordijk et al., (1999) reported a further case with some features of Prader-Willi syndrome. Martin et al., (1999) reported a three and half year old girl with maternal uniparental disomy confined to the 14q23-24 segment. The patient had mild developmental delay with a large head size but a normal CT scan. There were generalised hypotonia and joint laxity. Height was on the 25th centile. Disomy for chromosome 14 was looked for because of the triad of macrocephaly, developmental delay and joint laxity. Ralph et al., (1999) reported a fetus in whom trisomy 14 was found in a CVS sample and the fetus subsequently apparently had maternal isodisomy 14. The fetus died in utero at 18 weeks without clear pathological features. Miyoshi et al., (1998) reported a 9-month-old Japanese boy with an isochromosome 14q resulting in maternal uniparental disomy. He had a low birthweight, hypotonia and failure to thrive. There was dolichocephaly, frontal bossing, low-set ears, a short neck, small hands and feet and overlapping fingers. There was also a patent ductus arteriosus.
Manzoni et al., (2000) reported a 19 year old male with maternal chromosome 14 UPD secondary to i(14)(q10) who had maturity-onset diabetes of the young (MODY) with mild short stature, dolichocephaly, a high arched palate, hypoplasia of the ear helix, synophrys, a prominent nasal bridge, brachydactyly and 5th finger clinodactyly. Sanlaville et al., (2000) reported a four-year-old girl with maternal UPD 14 which was shown to be secondary to trisomic rescue after a maternal meiosis I error. There were only short stature, small hands and feet and mild developmental delay. The authors provide a good review of other cases with maternal UPD 14. Eggermann et al., (2001) reported a case of interstitial 14q13-14q31 maternal disomy. Birthweight and length were below the 3rd centile but head circumference was below the 50th centile. There was ""a large fontanelle, a snub nose, and low-set, malrotated ears"". ""The mandible was hypoplastic and retracted"". There was developmental delay of 1 to 2 months at the age of 6 months. There was poor feeding and the patients failed to thrive despite a high caloric intake. He died at the age of 6 months from aspiration pneumonia. Kotzot (2001) reviewed evidence for different imprinted regions on human chromosome 14. Mignon-Ravix et al., (2001) reported a family segregating for a 14q31 duplication. This was maternally inherited in five family members. In the proband, there were minor dysmorphic features and psychomotor delay associated with behavioural and sleep disturbance. However, the authors felt that this was unrelated to the duplication, in view of the fact that other family members were phenotypically normal. Kayashima et al., (2002) reported a 20-year-old man with maternal isodisomy for 14q21-q24 who developed maturity onset diabetes. Eggermann et al., (2002) provide a good clinical review of the effects of disomy and the indications for testing. Ionnides et al., (2014) have reviewed 51 cases of this short stature, low birth weight, hypotonia and early puberty syndrome. Obesity occurred in about 50% of cases and intelligence was mildly reduced. However see Coveler et al., (2003) who carried out further microsatellite analysis on this case and could not find convincing evidence of segmental heterodisomy. Dietz et al., (2003) could find no cases out of 200 cases referred for Prader-Willi screening. A useful comparison of mUPD14 and Prader-Willi syndrome is provided by Aretz et al., (2005). A useful comparison of mUPD14 and Prader-Willi syndrome is provided by Aretz et al., (2005). The condition is excellently reviewed (including descriptions of 10 new patients by Mitter et al., 2006).
Ioannides et al. (2014) reviewed 51 published Temple syndrome cases, finding 40 due to maternal uniparental disomy, six due to epimutation and five due to paternal deletion. In order of frequency, clinical characteristics included small feet, hypotonia, small hands, low birth weight, early onset puberty, motor developmental delay, postnatal short stature, IUGR, hyperextensible joints, speech delay, feeding difficulties and obesity. Dysmorphic features, in order of frequency, were frontal bossing or prominent forehead, high palate, micrognathia, recurrent otitis media, short philtrum, and clinodactyly.
Briggs et al. (2016) reported a female with Temple syndrome due to an epigenetic loss of methylation at IG-DMR/MEG3-DMR locus. Clinical features were intrauterine growth retardation, low birth weight, hypotonia, and poor feeding in the neonatal period. In early childhood, she showed failure to thrive and developmental delay. She had premature puberty with short stature and truncal obesity. Intelligence was normal. The authors reviewed previously published cases. It was not possible to differentiate between patients with epigenetic aberrations and those with maternal UPD 14 or a paternal deletion. Most patients had low birth weight, neonatal hypotonia with poor feeding, short stature, truncal adiposity developing in childhood. Facial dysmorphic features included frontal bossing, a fleshy nasal tip, short philtrum, high palate and micrognathia. The patients had early and puberty, resulting in reduced final height.
Zhang et al. (2016) described a male patient with Temple syndrome due to a mosaic trisomy of chromosome 14, cytogenetic analysis revealed 47,XX, +14[1]/46,XX[99], and SNP’s revealed that 14q11.2q22.3 and 14q32.2qter segments were maternal isodisomic, and the other regions of chromosome 14 were maternal heterodisomic. Clinical characteristics included IUGR, polyhydramnios, developmental delay, intellectual disability, hypotonia, growth hormone deficiency, delayed bone age, short stature, truncal obesity, scoliosis, small hands and feet, fifth finger clinodactyly, barrel chest, body asymmetry, cryptorchidism, and hyperpigmented skin patches. Dysmorphic features were hypertelorism, narrow palpebral fissures, and depressed nasal bridge.
Luk (2017) described a female patient with Temple syndrome and ring chromosome 14 arr[hg19] 14q11.2q22.1(20 483 247–52 205 241)×2–3. Clinical features included IUGR, failure to thrive, developmental delay, precocious puberty, and scoliosis. Dysmorphic features were short, anteverted nostrils, depressed nasal bridge, broad nasal tip and relatively small hands and feet.
Kagami et. al. (2017) diagnosed 32 patients with Temple syndrome due to either maternal 14q32 uniparental disomy (23), epimutations (6) or microdeletions (3). Nineteen individuals were from a large cohort of patients with clinical diagnosis of either Prader-Willi syndrome or Silver-Russell syndrome (molecularly negative). Most frequent clinical characteristics included postnatal growth failure (94%), small hands and feet (91%), prenatal growth failure (84%), precocious puberty (76%), hypoplastic placenta (71%), hypotonia with poor suck (68%), prominent forehead (63%), feeding difficulties (63%), relative macrocephaly at birth (52%), high arched palate (52%), and PWS or SRS-like phenotypes in infancy (50%).

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

¡Obtenga un Diagnóstico Genético más rápido y preciso!

Más de 250,000 pacientes analizados con éxito.
No espere años para recibir un diagnóstico. Actúe ahora y ahorre un tiempo valioso.

¡Empieza aqui!

"Nuestro camino hacia el diagnóstico de una enfermedad rara fue un viaje de 5 años que solo puedo describir como intentar hacer un viaje por carretera sin mapa. No sabíamos nuestro punto de partida. No sabíamos nuestro destino. Ahora tenemos esperanza ".

Imagen

Paula y Bobby
Padres de Lillie

¿Qué es FDNA Telehealth?

FDNA Telehealth es una empresa líder en salud digital que brinda un acceso más rápido a análisis genéticos precisos.

Con una tecnología hospitalaria recomendada por genetistas líderes, nuestra plataforma única conecta a los pacientes con expertos en genética para responder a sus preguntas más urgentes y aclarar cualquier inquietud que puedan tener sobre sus Síntomas.

Beneficios de FDNA Telehealth

Icono de FDNA

Credibility

Actualmente, nuestra plataforma la utilizan más del 70% de los genetistas y se ha utilizado para diagnosticar a más de 250,000 pacientes en todo el mundo.

Icono de FDNA

Accesibilidad

FDNA Telehealth ofrece análisis y exámenes faciales en minutos, seguidos de un acceso rápido a consejeros genéticos y genetistas.

Icono de FDNA

Facilidad de uso

Nuestro proceso comienza con un diagnóstico inicial en línea por parte de un consejero genético y sigue con consultas con genetistas y pruebas genéticas.

Icono de FDNA

Exactitud y precisión

Capacidades y tecnología de inteligencia artificial (IA) avanzadas con una tasa de precisión del 90% para un análisis genético más preciso.

Icono de FDNA

Valor por
Dinero

Acceso más rápido a consejeros genéticos, genetistas, pruebas genéticas y un diagnóstico. Tan rápido como en 24 horas si es necesario. Ahorre tiempo y dinero.

Icono de FDNA

Privacidad y seguridad

Garantizamos la máxima protección de todas las imágenes e información del paciente. Sus datos siempre están seguros, protegidos y encriptados.

Con FDNA Telehealth, se puede acercar a un diagnóstico.
¡Reserve ya su hora para la sesión de asesoramiento genético en línea, dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish