Achondroplasia (ACH)

O que é acondroplasia; ACH?

A acondroplasia é caracterizada por nanismo. O síndromes torna difícil para o corpo converter cartilagem em osso, o que leva a um crescimento ósseo restrito. É a causa mais comum de nanismo. Os indivíduos afetados geralmente têm membros curtos, incluindo braços e pernas, mas um tronco de tamanho normal.

É um congênito síndromes que geralmente é identificado no nascimento. A maioria dos casos de síndromes não são herdados, mas são o primeiro caso em uma família.

Esta síndromes também é conhecido como:
ACH

Que mudança de gene causa acondroplasia; ACH?

Mutações no gene FGFR3 são responsáveis pela síndromes.

80% dos casos são de novo, como na primeira mutação em uma família. Os casos restantes são herdados.

Em alguns casos, uma síndrome genética pode ser o resultado de uma mutação de novo e o primeiro caso em uma família. Neste caso, trata-se de uma nova mutação gênica que ocorre durante o processo reprodutivo.

quais são os principais sintomas de Acondroplasia; ACH?

O nanismo de membros curtos é o mais comum sintoma com adultos raramente crescendo mais de 4-4. 5 pés de altura. Uma grande cabeça e testa também são comuns.

Outras características físicas do síndromes incluem partes subdesenvolvidas da face, joelhos voltados para dentro e com pernas arqueadas, dedos das mãos e pés curtos, uma curva da parte inferior das costas e superlotação dos dentes.

Os indivíduos também podem ter problemas de controle de peso, bem como problemas de saúde relacionados a problemas com seus sistemas respiratório e nervoso.

Possíveis traços / características clínicas:
Herança autossômica dominante, Obesidade, Otite média recorrente, Atraso motor, Metáfise alargada, Baixa estatura de membro curto neonatal, Deficiência auditiva condutiva, Ventriculomegalia, Braquidactilia, Achatamento malar, Deslocação do cotovelo, Estenose espinhal com distância interpedicular reduzida, Displasia esquelética, Obstrução das vias aéreas superiores , Estenose do canal espinhal, Mão tridente, Macrocefalia, Morte cardíaca súbita, Rebatimento frontal, Retrusão do meio da face, Pequeno forame magno, Acantose nigricante, Genu varum, Frouxidão articular generalizada, Ponte nasal deprimida, Colo femoral curto, Subcrescimento dos membros, Hiperidrose, Hidrocefalia, Hiperlordose , Cifose, Apnéia, Compressão do tronco cerebral, Anormalidade da metáfise, Anormalidade da dentição, Anormalidade das costelas, Megalencefalia, Hipotonia muscular, Rizomelia, Forma anormal dos corpos vertebrais, Hipotonia muscular infantil, Narinas antevertidas, Peito estreito, Fala neurológica deficiência, hipermobilidade articular, extensão limitada do quadril, extensão limitada do cotovelo ensião, hiperlorde lombar

Como alguém faz o teste de acondroplasia; ACH?

O teste inicial para acondroplasia pode começar com a triagem de análise facial, por meio da plataforma de telegenética FDNA Telehealth, que pode identificar os principais marcadores da síndromes e delinear a necessidade de mais testes. Seguirá uma consulta com um conselheiro genético e, em seguida, um geneticista. 

Com base nesta consulta clínica com um geneticista, as diferentes opções para testes genéticos serão compartilhadas e o consentimento será solicitado para testes adicionais.

Informações médicas sobre acondroplasia; ACH

SYNDROME OVERVIEW:
Achondroplasia is an autosomal dominant metaphyseal chondrodysplasia resulting in the most common type of short limbed dwarfism. The phenotype includes rhizomelic limb shortening, midface hypoplasia, frontal bossing, macrocephaly, narrow chest, hypotonia and joint laxity. Craniocervical junction stenosis is uniformly present, and if severe, can result in cervical myelopathy and sudden death in infancy. Achondroplasia is caused by a recurrent mutation in FGFR3.

CLINICAL DESCRIPTION (GENERAL):
Achondroplasia is the most common cause of dwarfism and results in disproportionate short stature, with average male heights of 131 cm and female heights of 124 cm (Horton et al., 1978). Short limbs with rhizomelic shortening are universal, as is brachydactyly with a usual trident configuration of the hands. Ligamentous laxity, joint hypermobility and hypotonia are almost uniformly seen in infancy and can result in delayed development (Fowler et al., 1997; Ireland et al., 2012). Intelligence is unaffected. Typical facial features include macrocephaly, midface retrusion with depressed nasal bridge and frontal bossing. Middle ear dysfunction resulting in recurrent otitis is common. Obstructive sleep apnea is seen due to midface retrusion, and a small chest exacerbates desaturations. Craniocervical junction stenosis is uniformly present (Hecht et al., 1989), and spinal stenosis presents later in life and is the most common medical issue in adults.

CLINICAL DESCRIPTION (BODY SYSTEMS):
Skeletal: Short-limbed short stature with brachydactyly, ligamentous laxity, rhizomelia, genu varum, limited elbow extension, thoraco-lumbar kyphosis in infancy changing to lumbar lordosis with assumption of orthograde posture, spinal stenosis
Neurologic: Hypotonia is universally seen and contributes to aberrant motor development, craniocervical junction stenosis can cause upper cervical myelopathy, benign increased extra-axial cerebrospinal fluid is present in the majority of patients but true hydrocephalus is seen in <5% (Pauli and Botto, 2018). Hydrocephalus is felt to arise secondary to increase venous pressure from small jugular foraminae.
Head, eyes, ears, nose and throat: Middle ear dysfunction, recurrent otitis (either serous or infectious), conductive hearing loss (Tunkel et al., 2012), obstructive sleep apnea, relatively narrow palate and mandibular overgrowth are almost universal and frequently require orthodontia.
Respiratory: Narrow rib cage with increased compliance of ribs in neonatal period can result in restrictive lung disease, central and obstructive sleep apnea are seen (Tasker et al., 1998)
Skin: Possible acanthosis nigricans (Smid et al., 2018)
Radiographic findings: Short robust tubular bones with generalized mild metaphyseal changes, narrow sacrosciatic notch combined with square ilia in the pelvis, horizontal acetabulae and proximal femoral radiolucency, narrowing of the interpedicular distance of the caudal spine may be seen (Langer et al., 1967)

SYNDROME CHARACTERISTICS:
MODE(S) OF INHERITANCE: Autosomal dominant
PENETRANCE: Complete
PREVALENCE: Approximately 1:25,000
LIFE EXPECTANCY: Risk of death in infancy has decreased due to screening tools for craniocervical junction stenosis (Hashmi et al., 2018). There seems to be an increased risk of cardiovascular disease and mortality in young adults (Wynn et al., 2007). Life expectancy may approach the same as average stature individuals with good management.
AGE OF ONSET: Birth
PRENATAL PRESENTATION: Short limbs, increased occipital frontal circumference and polyhydramnios seen on ultrasound. Most evident in third trimester.

MOLECULAR GENETICS:
ASSOCIATED GENE: FGFR3
RECURRENT MUTATIONS: Greater than 95-99% of mutations occur at nucleotide c.1138 and change a glycine to arginine at position 380. Most are G>A, but G>C is also found.
TYPE OF MUTATIONS: c.1138G>A (p.Gly380Arg); c.1138G>C (p.Gly380Arg) is seen in approximately 99%. Based on the mechanism of action, gene deletions and duplications do not result in achondroplasia.
GENOTYPE/PHENOTYPE CORRELATION: The same amino acid substitution affects almost all patients, therefore no genotype/phenotype correlation exists.

KEY PUBLICATIONS:
The term achondroplasia was coined by Parrot in 1878, although examples of people with achondroplasia go back millennia.

Dr. Leonard Langer described the radiological findings of achondroplasia in 1967. His descriptions of square ilia, narrow sacrosciatic notch, horizontal inferior edge of ilia (acetabular roof), lucent proximal femora, increased angulation at L-S junction, short broad tubular bones and slight cupping at the ends of the ribs would serve as the diagnostic gold standard for years. Mutations in FGFR3, which encodes the transmembrane receptor FGFR3, were found to be causative of achondroplasia in 1994 (Shiang et al., 1994). Shiang et al., (1994) and Bellus et al., (1995) showed the large majority of mutations occur at the same nucleotide (c.1138) and cause a glycine to be replaced by an arginine at position 308 of the mature protein. This homogeneity is virtually universal among patients. The mutation increases the activity of FGFR3, which subsequently suppresses enchondral bone growth via chondrocyte growth plate suppression (Deng et al., 1996).

Increased mortality was documented in a study by Hecht et al., (1987) and they hypothesized that foramen magnum stenosis contributed. In 1989, Hecht et al. documented smaller growth of the foramen magnum. Pauli et al., (1995) assessed foramen magnum size combined with data from polysomnograms and neurological exams to determine when craniocervical decompression may be needed. Danielpour et al., (2007) subsequently described changes in cerebrospinal fluid dynamics in patients with achondroplasia in flexion and extension using cine MRI. Cerebrospinal fluid flow stopped in flexion, and posterior medullary compression occurred in extension. Decompression benefitted these patients. Current recommendations include neuroimaging of the craniocervical junction at time of diagnosis along with polysomnography (Trotter et al., 2005). These recommendations and subsequent interventions have decreased the mortality in the first year of life (Hashmi et al., 2018).

The surgical burden is high for patients with achondroplasia. Most undergo surgery, most commonly ENT and orthopedic procedures (Hoover-Fong, 2017). The majority of children require long-lasting pressure equalizing tubes in addition to adenotonsillectomy (Legare et al., 2018). Guided growth procedures may decrease the need for derotational osteotomities in the future.

Prior to the 1980s, early diagnosis of achondroplasia occurred at birth or shortly thereafter. With the advent of routine prenatal ultrasound, prenatal diagnosis could occur, although it would become much more accurate and common after the discovery of the molecular etiology in 1994. Since 2010, approximately 32% of diagnoses are made prenatally, 60% within the first day of life and 76% by one month (Legare et al., 2018).

SURVEILLANCE:
At Birth or Diagnosis:
• Plot weight, length and occipital frontal circumference on achondroplasia-specific growth curves (Horton et al., 1978; Hoover-Fong et al., 2007)
• Neuroradiologic imaging of craniocervical junction via MRI or CT. Thorough neurologic history and examination. Baseline neuroimaging of the brain to assess for hydrocephalus (Pauli and Botto, 2018)
• Baseline sleep study to look for sleep apnea associated with craniocervical junction stenosis (Pauli and Botto, 2018)
• Hearing screen at birth and again by 1 year of age

Ongoing Surveillance:
• Yearly growth measurements, including occipital frontal circumference, plotted on the appropriate achondroplasia growth chart (Horton et al., 1978; Hoover-Fong et al., 2007). The anterior fontanelle can close as late as age 6 years, therefore ongoing OFC measurements are important
• Monitoring for obstructive sleep apnea yearly by asking about snoring, glottal stops, daytime somnolence, difficult morning waking, bed wetting, irritability and depression. Obtain sleep study if concerns arise
• Yearly hearing screen until late elementary school years
• At least yearly evaluations with bone dysplasia specialist to monitor for kyphosis, lordosis and genu varum
• Complete neurological exam every year to monitor for spinal stenosis and cervical myelopathy due to craniocervical junction stenosis
• Ear, nose and throat evaluation if recurrent ear fluid or infections are present
• Inquire about adjustment to school and social situations

MANAGEMENT AND TREATMENT:
Craniocervical junction constriction: Intervention is likely needed if the following are seen: central hypopnea or apnea on sleep study; spinal cord compression or T2 abnormality on MRI or decreased size on computed tomography compared to documented achondroplasia standards; hyper-reflexia; or profound hypotonia (Pauli and Botto, 2018). Referral to pediatric neurosurgeon experienced in skeletal dysplasias for a likely decompression is warranted (Bagley et al., 2006). Approximately 20% of patients with achondroplasia may require craniocervical decompression (Hoover-Fong et al., 2017). Avoidance of activities that put stress on the craniocervical junction is recommended (trampolines, collision sports, gymnastics, etc.). Encourage rear-facing car seats as long as possible.

CLINICAL TRIALS:
https://clinicaltrials.gov/ct2/results?cond=Achondroplasia

PATIENT ORGANIZATIONS:
Little People of America, Inc. (LPA) https://www.lpaonline.org/
Restricted Growth Association UK https://rgauk.org/
Little People of Ireland (LPI): www.lpi.ie/
Little People of Canada https://comdir.bfree.on.ca/lpc/
Dwarfism Awareness Australia Inc. https://dwarfismawarenessaustralia.com/faqs/
Short Statured People of Australia (SSPA) https://www.sspa.org.au/
Little People of New Zealand https://lpnz.org.nz/
Short Statured people of Iraq: https://www.beyondachondroplasia.org/en/resources/patient-groups/associations/28-asia
Glory to Achondroplasia (GTA in Japan): http://glory-to-achondroplasia.com/
Little People of Pakistan: http://lppakistan.blogspot.pt/
Little People Association of the Philippines: https://www.facebook.com/LPAP2016/
Think Genetic: https://www.thinkgenetic.com/diseases/achondroplasia/organizations/106


AFFILIATIONS:
(1) University of Wisconsin School of Medicine and Public Health
[email protected]
https://www.pediatrics.wisc.edu


DATE OF UPDATE:
Dezembro 20, 2018

* This information is courtesy of the L M D.

If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Seja mais rápido e preciso Diagnóstico Genético!

Mais de 250,000 pacientes analisados com sucesso!
Não espere anos por um diagnóstico. Aja agora e economize um tempo valioso.

Começa aqui!

"Nosso caminho para o diagnóstico de uma doença rara foi uma jornada de 5 anos que só posso descrever como uma viagem sem mapa. Não sabíamos nosso ponto de partida. Não sabíamos nosso destino. Agora nós temos esperança. "

Imagem

Paula e Bobby
Pais de lillie

O que é FDNA Telehealth?

A FDNA Telehealth é uma empresa líder em saúde digital que fornece acesso mais rápido a análises genéticas precisas.

Com uma tecnologia hospitalar recomendada pelos principais geneticistas, nossa plataforma exclusiva conecta pacientes a Especialistas Em Genética para responder às suas perguntas mais urgentes e esclarecer quaisquer dúvidas que possam ter sobre seus Sintomas.

Benefícios do FDNA Telehealth

Ícone FDNA

Credibility

Nossa plataforma é usada atualmente por mais de 70% dos geneticistas e tem sido usada para diagnosticar mais de 250,000 pacientes em todo o mundo.

Ícone FDNA

Acessibilidade

O FDNA Telehealth fornece análise facial e triagem em minutos, seguido por acesso rápido a conselheiros genéticos e geneticistas.

Ícone FDNA

Fácil de usar

Nosso processo contínuo começa com um diagnóstico online inicial por um conselheiro genético e segue por consultas com geneticistas e testes genéticos.

Ícone FDNA

Acurácia - Precisão

Recursos e tecnologia avançada de inteligência artificial (AI) com uma taxa de precisão de 90% para uma maior precisão análise genética.

Ícone FDNA

Valor para
Dinheiro

Acesso mais rápido a conselheiros genéticos, geneticistas, testes genéticos e um diagnóstico. Em até 24 horas, se necessário. Economize tempo e dinheiro.

Ícone FDNA

Privacidade e segurança

Garantimos a máxima proteção de todas as imagens e informações do paciente. Seus dados estão sempre protegidos, protegidos e criptografados.

O FDNA Telehealth pode aproximar você de um diagnóstico.
Agende uma reunião de Aconselhamento Genitico online dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish