Cockayne syndrome

O que é Cockayne syndrome?

Cockayne syndromeé uma doença genética rara, geralmente diagnosticada nos primeiros dois anos de vida. Esta doença rara foi identificada pela primeira vez em 1936 e nomeada em homenagem ao médico que a identificou.

Existem 3 tipos de síndromes: Tipo A é a forma clássica da doença, Tipo B é a forma mais grave da doença, sendo o Tipo C a forma mais branda.



Quais mudanças genéticas causam Cockayne syndrome?

⅔ dos casos são causados por mutações no gene ERCC6. Os restantes ⅓ são o resultado de mutações no gene ERCC8. É herdado em um padrão autossômico recessivo.

Herança autossômica recessiva significa que um indivíduo afetado recebe uma cópia de um gene mutado de cada um de seus pais, dando-lhes duas cópias de um gene mutado. Os pais que carregam apenas uma cópia da mutação do gene geralmente não apresentam sintomas, mas têm uma chance de 25% de transmitir as cópias das mutações do gene para cada um de seus filhos.

Quais são os principais sintomas de Cockayne syndrome?

Sintomas variam em sua gravidade de acordo com o tipo de síndromes diagnosticado.

Física comum sintomas incluem uma cabeça pequena e baixa estatura.

As características faciais únicas incluem rosto comprido, queixo pequeno, olhos fundos e orelhas grandes.

O fracasso em crescer na infância, seguido por um fracasso em crescer adequadamente no final da infância também é uma característica do síndromes.

A condição é progressiva e muito sintomas piora com o tempo. Outras condições de saúde associadas ao síndromes incluem problemas de caminhada, marcha instável, problemas de equilíbrio e reflexos anormais.

A epilepsia se apresenta em alguns indivíduos com a doença, assim como a perda auditiva e a sensibilidade ao sol devido à pele muito fina.

Os indivíduos também podem ter problemas de fígado, rins e incapacidade de suar.

Anormalidades genitais podem se manifestar em homens e os indivíduos com o transtorno são incapazes de se reproduzir.

Várias deficiências intelectuais, desenvolvimento da fala de zero a muito limitado e envelhecimento prematuro também são características do síndromes.

Possíveis traços / características clínicas:
Pélvis hipoplásica, Hipoplasia dos dentes, Asa ilíaca hipoplásica, Hipogonadismo, Opacificação do estroma da córnea, Hepatomegalia, Cifose, Hipertensão, Hipermetropia, Distúrbio da marcha, Arritmia, Sensibilidade celular aumentada à luz UV, Epífises de marfim das falanges da mão, Prognóstico mandibular , Perda de tecido adiposo facial, Menstruação irregular, Micropênis, Fraqueza muscular, Tremor, Retardo de crescimento intrauterino, Incapacidade intelectual, Anormalidade da pigmentação da pele, Catarata, Dentes cariados, Anidrose, Anormalidade de potenciais evocados visuais, Anormalidade da orelha, Atrofia cerebral, Ataxia, Cicatriz atípica da pele, Calcificação dos gânglios da base, Retardo de crescimento pós-natal grave, Mancha epitelial pigmentar retiniana, Cabelo esparso, Estrabismo, Microcefalia, Aparência facial progeróide, Cabelo seco, Calvária espessada, Osso da pelve quadrada, Hormônio tímico diminuído, Tecido adiposo subcutâneo reduzido , Esplenomegalia, Hidrocefalia de pressão normal, Nistagmo, Sensori deficiência auditiva neural

Como alguém faz o teste de Cockayne syndrome?

O teste inicial para Cockayne syndrome pode começar com a triagem de análise facial, por meio do FDNA Telehealth plataforma telegenética, que pode identificar os principais marcadores do síndromes e delineia a necessidade de mais testes. Seguirá uma consulta com um conselheiro genético e, em seguida, um geneticista. 

Com base nesta consulta clínica com um geneticista, as diferentes opções para testes genéticos serão compartilhadas e o consentimento será solicitado para testes adicionais.

Informações médicas sobre Cockayne syndrome

The phenotypic spectrum of Cockayne syndrome includes photosensitivity, growth failure and progressive neurologic dysfunction. There are three distinct forms of the disease: severe early-onset, moderate and mild. Mutations in several genes belonging to the ERCC family, including ERCC6 and ERCC8, cause Cockayne syndrome.

In its classical form, this progressive neurological disorder is characterized in infancy by sun sensitivity, resulting in bullae and desquamation of the skin. The characteristic facial appearance does not develop until between the 2nd and 4th years. There is a loss of subcutaneous tissue around the eyes, giving the appearance of premature ageing. The head circumference at this stage is small, as is length, and sensorineural hearing loss is common. Both central and peripheral demyelination result in loss of skills and features of a neuropathy, although limb reflexes can be exaggerated, especially at the knee. A retinopathy occurs late and may be accompanied by optic atrophy. Pericapillary calcification in the cortex and in the basal ganglia is a common feature. Nance and Berry (1992) provide an excellent review.

Chromosome breakage is seen on exposure of cells to UV light. Unlike in xeroderma pigmentosum, excision repair after UV damage is normal, but there is a slow recovery of DNA and RNA synthesis. Any excision repair defects seem to be restricted to actively transcribed genes (Venema et al., 1990).

Lehmann et al., (1993) reviewed their findings in investigating RNA synthesis in 52 possible cases of Cockayne syndrome. Twenty-nine showed an abnormality. Of the 23 normal cases, four were felt to have features that were clinically completely consistent with Cockayne syndrome according to the criteria of Nance and Berry (1992). Of the cases with an abnormal RNA response, photosensitivity was present in almost all cases, and pigmentary retinopathy and dental caries were felt to be good discriminatory clinical features.

The severe early-onset form of the disease is probably the same as cerebro-oculo-facio-skeletal (COFS) syndrome. There is also a moderate group (see Natale, 2011) who are physically larger, can sit independently and can self-feed. Some cases have a milder phenotype, some without abnormalities of DNA repair. They have better speech and can walk.

There may also be a later-onset form with normal intelligence and relatively normal growth (Fujiwara et al., 1981; Kennedy et al., 1980; Felgenhauer and Ammann, 1976; Lanning and Simila 1970). Miyauchi et al., (1994) reported two adult siblings (aged 42 and 55) with features of the condition. Their IQs were in the mild to moderately delayed range. Both showed extreme UV sensitivity but had almost normal UV-induced unscheduled DNA synthesis.

In complement group B patients, Troelstra et al., (1992) reported mutations in the ERCC6 gene, which is involved in the preferential repair of the transcribed strand of DNA. Further mutations in the ERCC6 gene were reported by Mallery et al., (1998).

Itoh (1996) showed that two cases with features of DeSanctis-Cacchione syndrome belonged to complementation group B of Cockayne syndrome. Oh et al., (2006) again point to the phenotypic heterogeneity (some of their XP patients had features of Cockayne) of mutations in the XPB DNA helicase gene (ERCC3). Greenshaw et al., (1992) reported a Hispanic family where three siblings had features of De Sanctis-Cacchione syndrome (qv) but the response of the cells to UV light was more characteristic of Cockayne syndrome.

Colella et al., (1999) reported mutations in the CSB gene in three patients without photosensitivity. Colella et al., (2000) also reported two patients with features of DeSanctis-Cacchione syndrome who had an identical mutation in the CSB gene as a patient with Cockayne syndrome reported by Mallery et al., (1998).

Henning et al., (1995) found mutations in a gene which they called CSA (also called CKN1) in complement group A patients.

Vermeulen et al., (1993) reported further studies on the children first described by Jaeken et al., (1989). They were found to have a biochemical defect typical of xeroderma pigmentosum, complementation group G, indicating that some mutations in the seven genes known to be involved in xeroderma pigmentosum can sometimes give rise to the picture of Cockayne syndrome. Hamel et al., (1996) and Moriwaki et al., (1996) reported further cases with overlapping features with xeroderma pigmentosum belonging to complementation group G. There were features of COFS syndrome.

O'Donovan and Wood (1993) showed that the XP-G complementing protein (XPGC) is likely to be the same as the mouse ERCC5 gene. Scherly et al., (1993) showed homology of this gene to the yeast RAD2 gene. In the human, the XPGC gene maps to 13q32-33. Nouspikel et al., (1997) demonstrated mutations in the gene in three patients with XPG/CF features.

Itoh et al., (1996, 1995, 1994) reported three cases with increased sensitivity to sunlight, including cutaneous photosensitivity, freckling, dryness, and telangiectasia, but without neurological abnormalities. These features were similar to xeroderma pigmentosum, however UV irradiation studies were more indicative of Cockayne syndrome. Cells from these patients do not appear to belong to any of the xeroderma pigmentosum or Cockayne syndrome complementation groups, however. The authors suggested the name ""UV-sensitive syndrome"" (UVs syndrome).

Other cases with features of xeroderma pigmentosum and Cockayne syndrome have been assigned to XP group D (Wood, 1991). Broughton et al., (1995) reported a case with mutations in the XPD gene, the product of which is one of the subunits of the transcription factor TFIIH.

XPD mutations are also seen in patients with trichothiodystrophy (qv). Broughton et al., (2001) reported a case with features overlapping xeroderma pigmentosum and tricothiodystrophy with a XPD mutation. Clinical photographs in the paper were suggestive of Cockayne syndrome, although there were no eye abnormalities. Coin et al., (1998) showed that the XPD gene product, which codes for a helicase, does not interact with p44, a subunit of TFIIH, if pathological mutations are present.

Czeizel et al., (1995) reported a case with normal intelligence, overlapping features of acrogeria but with skin photosensitivity. Reiss et al., (1996) reported a boy who died at the age of 6 years with some features of Cockayne syndrome. He had evidence of nephrotic syndrome, secondary to focal segmental glomerulosclerosis, adrenocortical failure and hypertension.

Cleaver et al., (1994) reported the experience of prenatal diagnosis in either amniotic fluid or CVS cells using assays of DNA repair after UV light irradiation. Kleijer et al., (2006) report on their experience of 15 years of prenatal diagnosis.

Mutations in ERCC1 and ERCC4 (XPF) have also been implicated (Kashiyama et al., 2013). In two cases, the clinical picture was that of classical Cockayne syndrome, but in one there were also features of Fanconi anemia and xeroderma pigmentosa.

Xie et al. (2017) described two male siblings with Cockayne syndrome due to compound heterozygous mutations in the ERCC8 gene (including a complex intragenic rearrangement). Clinical features were intellectual disability, short stature, microcephaly, growth delay, hypotonia, vision loss due to optic nerve atrophy and retinitis pigmentosa, hearing loss and photosensitivity. Dysmorphic features included broad nasal base, protruding ears, micrognathia, and poorly aligned teeth. Brain CT scans of the proband showed bilateral calcifications in globus pallidus, calcifications in the subcortex of the left frontal lobe, mild cerebral atrophy, and cerebellar vermis dysplasia.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Seja mais rápido e preciso Diagnóstico Genético!

Mais de 250,000 pacientes analisados com sucesso!
Não espere anos por um diagnóstico. Aja agora e economize um tempo valioso.

Começa aqui!

"Nosso caminho para o diagnóstico de uma doença rara foi uma jornada de 5 anos que só posso descrever como uma viagem sem mapa. Não sabíamos nosso ponto de partida. Não sabíamos nosso destino. Agora nós temos esperança. "

Imagem

Paula e Bobby
Pais de lillie

O que é FDNA Telehealth?

A FDNA Telehealth é uma empresa líder em saúde digital que fornece acesso mais rápido a análises genéticas precisas.

Com uma tecnologia hospitalar recomendada pelos principais geneticistas, nossa plataforma exclusiva conecta pacientes a Especialistas Em Genética para responder às suas perguntas mais urgentes e esclarecer quaisquer dúvidas que possam ter sobre seus Sintomas.

Benefícios do FDNA Telehealth

Ícone FDNA

Credibility

Nossa plataforma é usada atualmente por mais de 70% dos geneticistas e tem sido usada para diagnosticar mais de 250,000 pacientes em todo o mundo.

Ícone FDNA

Acessibilidade

O FDNA Telehealth fornece análise facial e triagem em minutos, seguido por acesso rápido a conselheiros genéticos e geneticistas.

Ícone FDNA

Fácil de usar

Nosso processo contínuo começa com um diagnóstico online inicial por um conselheiro genético e segue por consultas com geneticistas e testes genéticos.

Ícone FDNA

Acurácia - Precisão

Recursos e tecnologia avançada de inteligência artificial (AI) com uma taxa de precisão de 90% para uma maior precisão análise genética.

Ícone FDNA

Valor para
Dinheiro

Acesso mais rápido a conselheiros genéticos, geneticistas, testes genéticos e um diagnóstico. Em até 24 horas, se necessário. Economize tempo e dinheiro.

Ícone FDNA

Privacidade e segurança

Garantimos a máxima proteção de todas as imagens e informações do paciente. Seus dados estão sempre protegidos, protegidos e criptografados.

O FDNA Telehealth pode aproximar você de um diagnóstico.
Agende uma reunião de Aconselhamento Genitico online dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish