Miller-Dieker Lissencephaly syndrome

O que é Miller-Dieker Lissencephaly syndrome?

É uma genética rara síndromes. A principal condição do síndromes é a lisencefalia, o desenvolvimento anormal do cérebro que leva ao desenvolvimento de um cérebro sem as dobras e sulcos normais. Em vez disso, o cérebro é bom. Isso, por sua vez, causa muitos dos principais sintomas do síndromes. A gravidade do síndromes depende de quão bom é o cérebro.

este síndromes também é conhecido como:
Lissencefalia - tipo I Lissencefalia síndromes MDLS Mds Miotonia - induzida pelo frio Miotonia induzida pelo frio Paralisia periódica - paramiotonia congênita Paralisia periódica paramiotoniacongenita Miotonia agravada por potássio Miotonia aumentada por potássio Miotonia intensificada por potássio miotonia do canal de sódio Miotonia do canal de sódio

Quais mudanças genéticas causam Miller-Dieker Lissencephaly syndrome?

A síndromes é causada por uma deleção de material genético no ou próximo ao braço curto do cromossomo 17 p13. 3. O tamanho dessa deleção varia entre os indivíduos, e o tamanho da deleção pode explicar por que alguns indivíduos afetados apresentam sintomas mais graves do que outros.

A síndrome pode ser herdada em um padrão autossômico dominante, mas a maioria dos casos é o resultado de novas deleções ou deleções que ocorrem durante a reprodução.

No caso de herança autossômica dominante, apenas um dos pais é o portador da mutação do gene e eles têm 50% de chance de transmiti-la a cada um de seus filhos. As síndromes herdadas em uma herança autossômica dominante são causadas por apenas uma cópia da mutação do gene.

Em alguns casos, uma síndrome genética pode ser o resultado de uma mutação de novo e o primeiro caso em uma família. Neste caso, trata-se de uma nova mutação gênica que ocorre durante o processo reprodutivo.

Quais são os principais sintomas de Miller-Dieker Lissencephaly syndrome?

A lissencefalia é a principal sintoma do síndromes.Isso afeta o córtex cerebral da superfície externa do cérebro. O desenvolvimento anormal causado pelo síndromes leva a um cérebro com menos dobras e sulcos do que o normal e, como resultado, um cérebro mais liso.

Este desenvolvimento anormal do cérebro desencadeia ainda mais sintomas. Isso inclui deficiência intelectual grave e atraso no desenvolvimento. Convulsões, rigidez muscular, baixo tônus muscular e problemas com a alimentação estão entre estes sintomas.

Características faciais únicas do síndromes incluem uma testa proeminente, um meio do rosto afundado, um nariz pequeno, inserção baixa e orelhas de formato anormal, uma mandíbula pequena e um lábio superior grosso. Em alguns indivíduos, é registrado um crescimento mais lento.

Possíveis traços / características clínicas:
Anormalidade do metabolismo / homeostase, Anormalidade do sistema cardiovascular, Cavum septo pelúcido, Catarata, Ponte nasal larga, Atrofia cortical cerebral, Polidrâmnio, Fenda palatina, Aplasia / Hipoplasia do corpo caloso, Nariz curto, Narinas antevertidas, Nefropatia, Lissencefalia, Baixa - orelhas curtas, Calcificações cerebrais na linha média, Micrognatia, Deficiência intelectual, Retardo de crescimento intrauterino, Hérnia inguinal, Hipotonia muscular infantil, Contratura articular da mão, Testa alta, Heterotopia de substância cinzenta, Hipoplasia do corpo caloso, Incoordenação, Insuficiência de crescimento, Atraso erupção dos dentes, Atraso motor, Ruga palmar profunda, Atresia duodenal, Epicanto, Anormalidade no EEG, Diminuição do movimento fetal, Criptorquidia, Clinodactilia do 5 dedo, Malformação do coração e grandes vasos, Gene contíguo síndromes, Vermelhão grosso do lábio superior, Vermelhão fino do lábio superior, Microcefalia, Espasmos infantis, Pneumonia por aspiração recorrente, Camptodactilia, Paraplegia espástica progressiva

Como alguém faz o teste de Miller-Dieker Lissencephaly syndrome?

O teste inicial para Miller-Dieker Lissencephaly syndromet 5 pode começar com a triagem de análise facial, por meio do FDNA Telehealth plataforma telegenética, que pode identificar os principais marcadores do síndromes e delineia a necessidade de mais testes. Seguirá uma consulta com um conselheiro genético e, em seguida, um geneticista.

Com base nesta consulta clínica com um geneticista, as diferentes opções de teste genético serão compartilhadas e o consentimento será solicitado para testes adicionais.

Informações médicas sobre Miller-Dieker Lissencephaly syndrome

Miller-Dieker Lissencephaly syndrome(MLDS) is a syndrome caused by a microdeletion on 17p13.3. Haploinsufficiency of PAFAH1B1, formerly the LIS1 gene, appears to cause lissencephaly (see LISSENCEPHALY1; LIS1) while loss of downstream genes in this region lead to additional features associated with MLDS. These features include a prominent forehead, bitemporal narrowing, a depressed nasal bridge, anteverted nares, midface hypoplasia and a prominent upper lip with a thin vermilion border.
Infants with type I lissencephaly (Dobyns et al., 1985) may be divided into those without significant dysmorphic features (isolated lissencephaly sequence, ILS) and those with dysmorphic features (Miller-Dieker syndrome). In the latter there is postnatal growth deficiency and a characteristic facial appearance. Microcephaly is common, but not invariable, and is usually not severe in the neonatal period. Characteristic facial features include a prominent forehead, bitemporal narrowing, a depressed nasal bridge, anteverted nares, midface hypoplasia and a prominent upper lip with a thin vermilion border (Allanson et al., 1998). Vertical furrowing of the forehead is present only in about 25% of cases and is usually present only in the neonatal period. There is frequently prolonged neonatal jaundice. CT and MRI scans show severe lissencephaly and, characteristically, a midline focus of calcification in the callosal remnant (this is seen in about 40% of patients with Miller-Dieker syndrome but is not usually seen in isolated lissencephaly sequence). Neuropathological investigation has revealed a 4-layer cortex (Viot et al., 2004). Other associated malformations include congenital heart defect (in cases with a large chromosome deletion) and post-axial polydactyly. Chitayat et al., (1997) reported a case with an omphalocele, and Ueda et al., (2006) a case with a gallbladder cancer.
About 50-70% of cases with Miller-Dieker syndrome can be shown to have a deletion of 17p13.3 by light microscopy and almost all the remainder will have a submicroscopic deletion, most easily demonstrated by fluorescent in situ hybridisation (FISH) (Kuwano et al., 1991; Dobyns et al., 1993). Ledbetter (1992) mentions a case with a cryptic telomeric translocation, present in one parent, and only demonstrable by FISH. A further maternal cryptic translocation was reported by Masuno et al., (1995). Honda et al., (1998) reported a case with a balanced 8p11.23;17p13.3 translocation. Joyce et al., (2002) reported a family where there were numerous miscarriages and a case of Miller-Dieker syndrome secondary to an 11p;17p translocation. Pollin et al., (1999) present data for recurrence risks where a parent carries a translocation involving 17p13.3.
Reiner et al., (1993) demonstrated mutations in a gene from the beta-transducin family of G protein-like molecules (LIS-1). Hattori et al., (1994) showed that LIS-1 was in fact a subunit of brain platelet-activating factor. Chong et al., (1997) and Lo Nigro et al., (1997) carried out further studies on LIS1 and demonstrated point mutations and deletions of the LIS1 gene in patients with isolated lissencephaly and Miller-Dieker syndrome. They suggest that mutations within the LIS1 gene cause isolated lissencephaly and that facial dysmorphism associated with Miller-Dieker syndrome may be caused by haploinsufficiency for genes distal to LIS1.
Isolated lissencephaly (ie: without dysmorphic features) is heterogeneous. About 20-30% of cases have submicroscopic deletions of 17p using the commercial L132 probe and about 40% are deleted for the LIS1 gene (Dobyns et al., 1993). Pilz et al., (1998) also found that using a LIS1 probe detected about 40% of deletions in cases of isolated lissencephaly. Intrauterine CMV infection and early placental insufficiency may be other causes. After exclusion of cases with known aetiology, Dobyns et al., (1992) found that 3 out of 41 sibs were affected, a recurrence risk of about 7%.
Pilz et al., (1998) studied patients with isolated lissencephaly, looking for mutations of the LIS1 or XLIS gene and estimated that mutations in these genes accounted for approximately 75% of cases. In patients with LIS1 mutations, brain malformations were more severe over the parietal and occipital regions, whereas in patients with XLIS mutations the abnormalities were more severe over the frontal cortex (Dobyns et al., 1999). Sakamoto et al., (1998) studied 12 patients with isolated lissencephaly or MIller-Dieker syndrome and found deletions of part of the LIS1 gene in 6, and 1-bp deletion of the LIS1 gene in one other case. Pilz et al., (1999) found the appearance of subcortical band heterotopia in two boys with missense mutations of the XLIS gene. They also found a missense mutation in the LIS1 gene in another boy with band heterotopia. In the study of 15 patients with classical lissencephaly and subcortical band heterotopia, Torres et al., (2004) found that of the 8 patients with LIS1 mutations, all had a milder phenotype (grades 4 to 6) with, in some, posterior agyria and anterior pachygyria.Cardoso et al., (2000) report phenotype/genotype correlations in patients with LIS1 mutations. Leventer et al., (2001) reported five patients with missense mutations in LIS1. They pointed out that the phenotype could be milder and reported a case with normal intelligence. Further deletions and mutations were reported by Cardoso et al., (2002).
Partial pachygyria, either bilateral frontal or bilateral posterior, with superimposed polymicrogyria may be autosomal recessive in a significant proportion of cases. Dobyns and Truwit (1995) provide a good review of syndromes featuring lissencephaly. Barkovich et al., (1996) presented a comprehensive classification for malformation of cortical development.
Fox and Walsh (1999) and Barkovich et al., (2001) provide good reviews of the genetics of neuronal migration defects. Kuzniecky and Barkovich (2001) and Kato and Dobyns provide good reviews of abnormalities of cortical development.
Ross et al., (2001) provided a classification of the group of conditions characterised by lissencephaly with cerebellar hypoplasia (LCH). Group LCHa is characterised by lissencephaly with mild cerebellar vermis hypoplasia. One child with a LIS1 mutation was found with this brain scan appearance.
Toyo-oka et al., (2003) showed that the gene encoding 14-3-3epsilon (YWHAE), one of a family of ubiquitous phosphoserine/threonine-binding proteins, is always deleted in individuals with MDS. Mice deficient in Ywhae have defects in brain development and neuronal migration, similar to defects observed in mice heterozygous with respect to Pafah1b1. Mice heterozygous with respect to both genes have more severe migration defects than single heterozygotes.
Fong et al., (2004), suggest that delayed cortical development might be seen on 23 week prenatal ultrasound scans, and that when seen should lead to further investigation.
Mei et al., (2008) looked at 45 patients with isolated lissencephaly. LIS1 mutations were found in 44% and 1 had a duplication. They suggest that MLPA has a high yield and should be the method of choice for molecular diagnosis.
Bellucco et al. (2017) described a 6-month-old male patient with Miller-Dieker syndrome. The patient’s mother had a history of ectopic pregnancies and a first trimester spontaneous abortion. The patient had dysmorphic features, including microcephaly, oblique palpebral fissures, hypertelorism, upturned nares, long philtrum, thin superior lip, micrognathia, low-set ears, transverse palmar creases, and bilateral cryptorchidism. He also had recurrent seizures and developmental delay. Renal ultrasound showed multicystic dysplastic left kidney, echocardiogram showed patent foramen ovale. Brain MRI revealed lissencephaly and bilateral absence of auditory evoked potential. The authors found an unbalanced t(17;Y), that resulted in a 5.5-Mb 17p deletion, and a karyotype with 45 chromosomes. The deletion region encompassed 167 genes, including 91 OMIM genes.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Seja mais rápido e preciso Diagnóstico Genético!

Mais de 250,000 pacientes analisados com sucesso!
Não espere anos por um diagnóstico. Aja agora e economize um tempo valioso.

Começa aqui!

"Nosso caminho para o diagnóstico de uma doença rara foi uma jornada de 5 anos que só posso descrever como uma viagem sem mapa. Não sabíamos nosso ponto de partida. Não sabíamos nosso destino. Agora nós temos esperança. "

Imagem

Paula e Bobby
Pais de lillie

O que é FDNA Telehealth?

A FDNA Telehealth é uma empresa líder em saúde digital que fornece acesso mais rápido a análises genéticas precisas.

Com uma tecnologia hospitalar recomendada pelos principais geneticistas, nossa plataforma exclusiva conecta pacientes a Especialistas Em Genética para responder às suas perguntas mais urgentes e esclarecer quaisquer dúvidas que possam ter sobre seus Sintomas.

Benefícios do FDNA Telehealth

Ícone FDNA

Credibility

Nossa plataforma é usada atualmente por mais de 70% dos geneticistas e tem sido usada para diagnosticar mais de 250,000 pacientes em todo o mundo.

Ícone FDNA

Acessibilidade

O FDNA Telehealth fornece análise facial e triagem em minutos, seguido por acesso rápido a conselheiros genéticos e geneticistas.

Ícone FDNA

Fácil de usar

Nosso processo contínuo começa com um diagnóstico online inicial por um conselheiro genético e segue por consultas com geneticistas e testes genéticos.

Ícone FDNA

Acurácia - Precisão

Recursos e tecnologia avançada de inteligência artificial (AI) com uma taxa de precisão de 90% para uma maior precisão análise genética.

Ícone FDNA

Valor para
Dinheiro

Acesso mais rápido a conselheiros genéticos, geneticistas, testes genéticos e um diagnóstico. Em até 24 horas, se necessário. Economize tempo e dinheiro.

Ícone FDNA

Privacidade e segurança

Garantimos a máxima proteção de todas as imagens e informações do paciente. Seus dados estão sempre protegidos, protegidos e criptografados.

O FDNA Telehealth pode aproximar você de um diagnóstico.
Agende uma reunião de Aconselhamento Genitico online dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish