Peroxisome Biogenesis Disorder

O que é Peroxisome Biogenesis Disorder?

Também conhecido como Zellweger síndromes espectro, este grupo de doenças raras tem semelhantes sintomas e todos afetam várias partes do corpo. O espectro inclui três síndromes que diferem na gravidade de seus sintomas. A expectativa de vida com a forma mais grave da doença é limitada e muitos indivíduos afetados não sobrevivem à infância.

Síndromes Sinônimos:
Cérebro-hepato-renal síndromes

Quais mudanças genéticas causam Peroxisome Biogenesis Disorder?

Existem pelo menos 12 genes que podem ser responsáveis por causar o distúrbio.

As condições são herdadas de maneira autossômica recessiva.

Quais são os principais sintomas de Peroxisome Biogenesis Disorder?

Os sintomas variam de acordo com o tipo de doença.

Síndromes de Zellweger: é a forma mais grave da doença. Geralmente é identificado quando o bebê é recém-nascido. Baixo tônus muscular, dificuldades de alimentação, perda de audição e visão, convulsões, anormalidades esqueléticas e características faciais muito distintas são sintomas comuns da síndrome. Geralmente, os bebês com essa forma do transtorno não sobrevivem ao primeiro ano de vida.

Adrenoleucodistrofia neonatal (NALD): esta é uma forma mais moderada da doença. Os principais sintomas incluem baixo tônus muscular, perda de visão e / ou audição, problemas relacionados ao fígado, bem como atraso no desenvolvimento e deficiência intelectual. Os indivíduos geralmente sobrevivem na infância com essa forma da síndrome.

Doença Refsum infantil: os sintomas desta forma são semelhantes aos da NALD. Em alguns casos, sabe-se que os indivíduos afetados por essa forma do distúrbio sobrevivem até a idade adulta.

Como alguém faz o teste de Peroxisome Biogenesis Disorder?

O teste inicial para Peroxisome Biogenesis Disorder pode começar com a triagem de análise facial, por meio do FDNA Telehealth plataforma telegenética, que pode identificar os principais marcadores do síndromes e delineia a necessidade de mais testes. Seguirá uma consulta com um conselheiro genético e, em seguida, um geneticista. 

Com base nesta consulta clínica com um geneticista, as diferentes opções para testes genéticos serão compartilhadas e o consentimento será solicitado para testes adicionais.

Informações médicas sobre Peroxisome Biogenesis Disorder

These infants are severely hypotonic at birth and may have nystagmus and seizures. The face is characteristic with a tall forehead, hypoplastic supra-orbital ridges and lack of expression. The presence of epicanthic folds and Brushfield spots has sometimes led to the mis-diagnosis of Down's syndrome. Other findings include cataracts, camptodactyly, club feet, a large liver, stippled epiphyses and stippling of the patellae. Khoury et al., (1983) reported a case with features of VACTERL association and Hassinck et al., (1996) a case with anal atresia. Peroxisomes are missing in the liver and kidneys and the activities of multiple peroxisomal enzymes are reduced leading to deficiency of ether-glycolipids, and accumulation of very long chain fatty acids, pipecolic acid and bile acid intermediates. Erdem et al., (1995) reported a case with intestinal lymphangiectasia and Unay et al., (2005) a case with bilateral caudothalamic groove cysts.
Naritomi et al., (1988) reported an affected female with a del(7)(q11.22q11.23) and Naritomi et al., (1989) reported a case with a 7p12q11 pericentric inversion, suggesting a tentative gene assignment at 7q11.
At the molecular level the disease is likely to be heterogeneous. At least six complementation groups have been demonstrated by somatic cell fusion studies (Brul et al., 1988; Roscher et al., 1989; McGuinness et al., 1990). Moser et al., (1995) demonstrated at least 16 complementation groups amongst cases with manifestations of a peroxisomal assembly disorder.
Shimozawa et al., (1992) demonstrated a point mutation in both alleles of the peroxisome assembly factor-1 gene (PAF-1; PEX2; PMP35; PXMP3) in a single patient. Shimozawa et al., (1993) reported a further patient with a PAF-1 mutation, and pointed out that at least nine genes must be involved in the assembly of peroxisomes. Masuno et al., (1994) mapped the PXMP3 gene to 8q21.1. Gartner et al., (1992) found a mutation in the 70K peroxisomal membrane protein gene (PMP70) in two patients. This gene maps to chromosome 1. Interestingly, one patient had apparently received one abnormal allele as a new mutation. However Paton et al., (1997) cast doubt on the role of the PMP70 gene as they could find no mutations in 12 patients from complementation group 1 and queries the role of this gene in the aetiology of Zellweger syndrome. Poulos et al., (1995) reported further complementation groups. In one case the features weren't typical of Zellweger syndrome facially but no photographs were shown. There was a right sided aortic arch and supravalvular pulmonary stenosis with a secundum atrial septal defect and a membranous ventricular septal defect. Fukuda et al., (1996) isolated the human PAF-2 gene (PEX6), mapped it to 6p21.1, and demonstrated mutations in two Zellweger patients belonging to group C. Other cases are likely to be due to mutations in genes coding for the peroxisomal targeting signal (PTS) receptors. Dodt et al., (1995) and Wiemer et al., (1995) demonstrated mutations in the PTS1 receptor (PEX5). Honsho et al., (1998) demonstrated mutations in the PEX16 gene in patients from complementation group D (complementation group IX in USA). Braverman et al., (1995), Fitzpatrick (1996), Waterham and Cregg (1997) and Raymond (1999) provide good reviews of disorders of peroxisome biogenesis.
Chang et al., (1997) and Okumoto and Fujiki (1997) showed mutations in the PEX12 gene in patients with Peroxisome Biogenesis Disorders belonging to complementation group 3. Precise clinical details were not given. Chang and Gould (1998) report further mutations in seven cases. PEX2 mutations (complimentation group 10) were found in 4 patients with a Peroxisome Biogenesis Disorder by Gootjes et al., (2004). This is the same as PXMP3 on chromosome 8q21.
Reuber et al., (1997), Portsteffen et al., (1997) and Tamura et al., (1998) reported common mutations in the PEX1 gene in patients with Peroxisome Biogenesis Disorders falling into the complementation group 1. A common PEX1 allele, G843D is present in approximately half group 1 patients (Walter et al., 2001). Maxwell et al., (1999) reported a common frameshift mutation in PEX1 in the Australian population. Okumoto et al., (1998) demonstrated mutations in the PEX10 gene in a patient from complementation group B. Imamura et al., (1998) showed that PEX1 mutations causing the Zellweger phenotype resulted in no peroxisomes being seen in fibroblasts from patients, whereas in mutations causing the infantile Refsum disease phenotype, peroxisomes were seen when the cells were cultured at 30 degrees centigrade, but not 37 degrees centigrade. Warren et al., (1998) found mutations in the PEX10 gene in one patient with the Zellweger phenotype and a further patient with features of neonatal adrenoleukodystrophy. Shimozawa et al., (1999) and Al-Dirbashi et al., (2009) reported mutations in the PEX13 gene in patients with the Zellweger phenotype. This gene codes for a protein, Pex13p, which is a SH3 protein, a docking factor for the peroxisome targeting signal 1 receptor (PEX5). The Shimozawa et al., (1999) patient belonged to complementation group H. Shimozawa et al., (2000) studied a patient belonging to complementation group G. A 1 base insertion in the PEX3 gene was demonstrated. This codes for Pex3p, a peroxisomal membrane protein (PMP) factor for the proper localisation of PMPs. Further mutations in the PEX3 gene were reported by Muntau et al., (2000) and Ghaedi et al., (2000). Uniparental disomy (maternal isodisomy) of chromosome 1, has also resulted in Zellweger syndrome (Turner et al., 2007).
van Grunsven et al., (1999) reported two patients with features of a peroxisomal disorder (hypotonia, absence of suck reflexes, convulsions and craniofacial dysmorphism in one patient). Enoyl-CoA hydratase deficiency was demonstrated, indicating a new type of D-bifunctional protein deficiency. VLCFA levels were increased, however phytanic acid levels were normal as were levels of bile acid intermediates. Raas-Rothschild., (2002) reported a child with a peroxisomal disorder secondary to PEX6 mutations. Both parents had evidence of peroxisomal abnormalities and had been diagnosed as having Usher because of sensorineural deafness and retinitis pigmentosa. Matsumato et al., (2003) demonstrated mutations in PEX26, encoding a 305-amino-acid membrane peroxin, in patients from complementation group 8. PEX14 mutations also occurr (Huybrechts et al., 2008). Two patients, one 9 months old, the other 28 years-old, clinically had Leber amaurosis (Majewski et al., 2011). Both had biochemical evidence of Zellweger syndrome (see elsewhere), and both had PEX1 mutations.
Gunduz et al (2016) described two cases with mutations in PEX1. The patients presented with neurodevelopmental delay, hepatomegaly, elevated hepatic enzymes and dysmorphic features. The facial features included arched eyebrows, broad nasal root, low set ears, downslanting palpebral fissures, epicanthal folds, and myopathic facies. Additional abnormalities included septo optic dysplasia in the first patient and retinitis pigmentosa in the second patient.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Seja mais rápido e preciso Diagnóstico Genético!

Mais de 250,000 pacientes analisados com sucesso!
Não espere anos por um diagnóstico. Aja agora e economize um tempo valioso.

Começa aqui!

"Nosso caminho para o diagnóstico de uma doença rara foi uma jornada de 5 anos que só posso descrever como uma viagem sem mapa. Não sabíamos nosso ponto de partida. Não sabíamos nosso destino. Agora nós temos esperança. "

Imagem

Paula e Bobby
Pais de lillie

O que é FDNA Telehealth?

A FDNA Telehealth é uma empresa líder em saúde digital que fornece acesso mais rápido a análises genéticas precisas.

Com uma tecnologia hospitalar recomendada pelos principais geneticistas, nossa plataforma exclusiva conecta pacientes a Especialistas Em Genética para responder às suas perguntas mais urgentes e esclarecer quaisquer dúvidas que possam ter sobre seus Sintomas.

Benefícios do FDNA Telehealth

Ícone FDNA

Credibility

Nossa plataforma é usada atualmente por mais de 70% dos geneticistas e tem sido usada para diagnosticar mais de 250,000 pacientes em todo o mundo.

Ícone FDNA

Acessibilidade

O FDNA Telehealth fornece análise facial e triagem em minutos, seguido por acesso rápido a conselheiros genéticos e geneticistas.

Ícone FDNA

Fácil de usar

Nosso processo contínuo começa com um diagnóstico online inicial por um conselheiro genético e segue por consultas com geneticistas e testes genéticos.

Ícone FDNA

Acurácia - Precisão

Recursos e tecnologia avançada de inteligência artificial (AI) com uma taxa de precisão de 90% para uma maior precisão análise genética.

Ícone FDNA

Valor para
Dinheiro

Acesso mais rápido a conselheiros genéticos, geneticistas, testes genéticos e um diagnóstico. Em até 24 horas, se necessário. Economize tempo e dinheiro.

Ícone FDNA

Privacidade e segurança

Garantimos a máxima proteção de todas as imagens e informações do paciente. Seus dados estão sempre protegidos, protegidos e criptografados.

O FDNA Telehealth pode aproximar você de um diagnóstico.
Agende uma reunião de Aconselhamento Genitico online dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish