Prader-Willi syndrome (PWS)

O que é Prader-Willi syndrome (PWS)?

A síndromes de Prader-Willi é uma doença genética que atualmente é a causa mais comum de obesidade infantil com risco de vida. Na infância, os indivíduos com a doença desenvolvem um apetite insaciável que desencadeia a alimentação crônica.

A síndrome ocorre em 1 em 15,000 nascidos vivos.

Sinônimos de Síndrome:
Síndrome de Prader-labhart-willi, PWS

Quais mudanças genéticas causam Prader-Willi syndrome (PWS)?

Em 70% dos casos, uma deleção na cópia paterna do cromossomo 15 em cada célula causa a síndromes. 25% dos casos são causados pela duplicação do cromossomo 15 da mãe. O restante dos casos é causado por uma translocação entre os dois cromossomos 15 e a subseqüente deleção de uma parte. A condição geralmente é o resultado de uma mutação ou evento aleatório.

A herança da microdeleção ocorre quando há uma deleção de vários genes em um cromossomo. O cromossomo específico no qual as deleções ocorrem determinará a síndrome que elas causam.

Normalmente, herdamos uma cópia de cada par de cromossomos de cada pai biológico. No caso de dissomia, ambas as cópias do par de cromossomos são recebidas de um dos pais e nenhuma do outro. Isso também é conhecido como dissomia uniparental. Com a maioria dos genes, isso não é um problema e não causará nenhum problema médico ou de saúde. No entanto, quando genes específicos estão em causa, problemas com impressão genômica podem causar síndromes genéticas específicas.

Genes, localizações e modos de herança:
SNORD115- 1, 15 q11. 2 - Microdeleção, dissomia
SNORD116- 1, 15 q11. 2 - Microdeleção, dissomia
NDN, 15 q11. 2 - Microdeleção, Dissomia
PWAR1, 15 q11. 2 - Microdeleção, dissomia
HERC2, 15 q13. 1 - Microdeleção, dissomia
SNRPN, 15 q11. 2 - Microdeleção, dissomia
NPAP1, 15 q11. 2 - Microdeleção, dissomia
MKRN3, 15 q11. 2 - Microdeleção, dissomia
PWRN1, 15 q11. 2 - Microdeleção, dissomia
MAGEL2, 15 q11. 2 - Microdeleção, Dissomia
IPW, 15 q11. 2 - Microdeleção, dissomia

Número OMIM - 176270 (verifique a página OMIM para obter informações atualizadas)

Quais são os principais sintomas de Prader-Willi syndrome (PWS)?

Os principais sintomas da síndromes de Prader-Willi na infância são hipotonia (baixo tônus muscular), deficiência de crescimento e dificuldades de alimentação. Na infância, esses sintomas são substituídos por apetite insaciável, alimentação crônica em excesso, obesidade e, muitas vezes, o desenvolvimento de diabetes tipo 2.

As características faciais típicas da síndrome incluem testa estreita, olhos amendoados e boca triangular. Baixa estatura e mãos e pés pequenos também são características físicas comuns.

Outros sintomas incluem órgãos genitais subdesenvolvidos em homens e mulheres e puberdade atrasada ou incompleta que frequentemente resulta em infertilidade. A deficiência intelectual leve a moderada é comum, assim como os problemas com transtornos compulsivos e problemas de comportamento relacionados à falta de controle dos impulsos.

Possíveis traços / caractersticas clínicas:
Atraso no desenvolvimento da fala e da linguagem, Hipoventilação, Hipotonia generalizada, Hipopigmentação generalizada, Varredura frontal do cabelo, Hipopigmentação da pele, Hipopigmentação do cabelo, Hipogonadismo hipogonadotrópico, Hipoplasia labia minora, Pé curto, Insuficiência adrenal, Hipopigmentação do cabelo, Hipogonadismo hipogonadotrópico, Hipoplasia de pequenos lábios, Pé curto, Insuficiência adrenal, Displasia do quadril, Baixa estatura , Deficiência de hormônio do crescimento, Polifagia, Hiperinsulinemia, Fala nasal, Hipermetropia, Cifose, Osteoporose, Oligomenorréia, Obesidade, Amenorréia primária, Puberdade precoce, Psicose, Sindactilia, Convulsão, Fotossensibilidade cutânea, Coordenação motora grosseira deficiente, Coordenação motora fina pobre, Sucção deficiente, Hipoplasia escrotal, Esotropia, Hipoplasia clitoriana, Dolicocefalia, Ventriculomegalia, Atraso motor, Puberdade retardada, Sensação de dor prejudicada, Massa muscular diminuída, Fracasso de crescimento na infância, Criptorquidismo, Movimento fetal diminuído, Cantos da boca voltados para baixo, Infertilidade, Micropenia, Osteopenia deficiência, miopia, bri nasal estreito dge, palma estreita

Como alguém faz o teste de Prader-Willi syndrome (PWS)?

O teste inicial para a síndromes de Prader-Willi pode começar com uma triagem de análise facial, por meio da plataforma de telegenética FDNA Telehealth, que pode identificar os principais marcadores da síndrome e delinear a necessidade de mais testes. Seguirá uma consulta com um conselheiro genético e, em seguida, um geneticista. 

Com base nesta consulta clínica com um geneticista, as diferentes opções para testes genéticos serão compartilhadas e o consentimento será solicitado para testes adicionais.

Informações médicas sobre Prader-Willi Síndromes

The cardinal features of this condition are well known. Severe hypotonia is usually present at birth, and feeding difficulties and failure to thrive may predominate in the first year of life. In the second year over-eating may begin, with subsequent obesity. Short stature, mental retardation, hypogonadism and small hands and feet complete the clinical picture. Average adult height in males is 155cm and in females 147cm (Holm et al., 1993). Nagai et al., (2000) provide growth curves for Prader-WIlli syndrome. Mental retardation is mild to moderate, although up to 10% of adults are said to have an IQ within the normal range (Greenswag, 1987). Excessive skin 'picking' and thick saliva have been noted as unusual signs. Fair hair and skin has been noted in many patients, especially those with a deletion of chromosome 15 (Lee et al., 1994, Spritz et al., 1997).
Growth hormone deficiency and precocious puberty have been reported (Crino et al., 2008) and repeated hypoglycemia with its consequences can add to the problem (Harrington et al., 2014).
Eiholzer et al., (2000) suggest that growth hormone improves motor development, but not speech development in Prader-Willi syndrome. Myers et al., (2000) studied 35 Prader-Willi children given growth hormone for 24 months and found that there was an increase in lean body mass, a decrease in percentage body fat and improvements in physical strength and agility. However, between 12 and 24 months the growth rate slowed. Eiholzer et al., (2003) suggested that a well-defined and easy-to-accomplish training program improves local body composition and has generalized effects on physical activity and capacity. A patient on growth hormone treatment who died suddenly was reported by van Vliet et al.,(2004). Unexpected death (hypothalamic dysfunction) must not be underestimated (Stevenson et al., 2004). Schrander-Stumpel et al., (2004), looked at the cause of death in 27 cases. In young children hypotonia and hypoventilation were risk factors. Rumination and aspiration, were contributary causes. No child was on growth hormone. Nagai et al., (2005) discussed the causes of sudden unexpected death and concluded that a respiratory dysregulation and hypothalamic dysunction may have been present in deceased PWS patients, and that growth hormone therapy may have led to obstructive respiratory disturbances. A patient reported by Wilson et al., (2006) developed respiratory distress whilst on growth hormone, and improved when therapy was stopped. Intractable metabolic acidosis resulting in death was reported by Zaglia et al., (2005). Nagai et al., (2006) mentioned that scoliosis was not induced by GH therapy, although a non-obese boy reported by Tokutomi et al., (2006), with severe scoliosis and respiratory distress, was on GH.
Ten patients over the age of 50 years were reported by Sinnema et al., (2012). Behavioral problems were common.
Vogels et al., (2003) studied 59 patients and found that six (15.7%) had experienced a psychotic episode. Five of these patients had uniparental disomy. Holm et al., (1993) present a good review of the consensus diagnostic criteria. Whittington et al., (2001) estimate the population prevalence to be 1 in 52,000, with a birth incidence of 1 in 29,000. The mean mortality rate was estimated to be 3% for all ages but about 7% above the age of 30. Smith et al., (2003) estimated the birth prevalence to be 1 in 25,000.
Fifty-five to seventy percent of patients can be shown to have a small, paternally-derived deletion of the proximal part of the long arm of chromosome 15 by cytogenetic analysis. Of cases without a cytogenetic deletion 40% have deletions detectable at the DNA level and 60% have maternal disomy for part or all of chromosome 15 (Mascari et al., 1992). Cassidy et al., (1997) provided evidence suggesting that cases with uniparental disomy were less likely to have a typical facial appearance or to show manifestations such as skin picking. Cases without evidence of 15q deletions or maternal disomy should be re-assessed clinically (Lai et al., 1993) (although Orstavik et al., (1992) reported a convincingly affected sib pair without 15q abnormalities). Smith-Magenis syndrome (17p-) should be considered where chromosome 15q studies are negative. Lammer et al., (2001) reported a child with features of Prader-Willi syndrome who was shown to have an Xq27.2->qter duplication.
Cassidy et al., (1992) reported a female infant with the clinical features of Prader-Willi syndrome where trisomy 15 had been demonstrated on a chorionic villus biopsy but cells from the infant showed a 46,XX karyotype with maternal disomy 15. Purvis-Smith et al., (1992) reported a similar case. Christian et al., (1996) studied three cases where mosaic trisomy 15 had been picked up at amniocentesis and four cases at CVS. One of the amniocentesis and one of the CVS cases was found to have uniparental disomy for chromosome 15. The authors recommend testing for uniparental disomy in all cases where mosaic trisomy 15 is encountered by CVS or amniocentesis. Olander et al., (2000) reported a boy with mosaic trisomy 15 associated with uniparental disomy 15. The phenotype was more severe than that usually seen in Prader-Willi syndrome.
Robinson et al., (1993) and Liehr et al., (2005) showed that in cases of Prader-Willi syndrome with an additional marker chromosome derived from 15, maternal uniparental disomy can be demonstrated. However Bettio et al., (1997) reported one case with a marker 15 not including the Prader-Willi region who had a 15q11-13 deletion and also a patient with a marker X chromosome and maternal uniparental disomy for chromosome 15. Mowery-Rushton et al., (1996) reported cases with mosaicism for deletions of 15q11-13. Hulten et al., (1991) reported a family where a balanced (15;22)(q13;q11) was segregating. Unbalanced paternal transmission of the derived 15 resulted in Prader-Willi syndrome, whereas maternal transmission resulted in Angelman syndrome. Toth-Fejel et al., (1996) reported two cases where cryptic translocations had apparently led to nondisjunction and secondary maternal disomy. The translocations involved heteromorphic satellite regions of chromosomes 14 and 15. High resolutions banding of chromosome 15 long arms was normal. The authors report that out of 50 PWS cases referred to the laboratory 3 (6%) had a translocation involving chromosome 15. Three families have been reported where normal individuals carrying a balanced chromosome 15 translocation involving 15q11-13 have had children with Prader-Willi or Angelman syndrome (Smeets et al., 1992; Horsthemke et al., 1996). The mechanism is a deletion, thought to be due to unequal crossing over involving the translocated chromosome with the 15 centromere. Devriendt et al., (1997) reported detailed molecular studies on a girl with mosaic trisomy 15 and mosaic XXX with features of Prader-Willi syndrome.
Ozcelik et al., (1992), Leff et al., (1992) and Glenn et al., (1993) showed that the small nuclear ribonuclear protein polypeptide N (SmN) gene (SNRPN) at 15q12 is imprinted in the mouse and Cattanach et al., (1992) showed that maternal disomy for the equivalent region on mouse chromosome 7 resulted in absence of SNRPN expression. Driscoll et al., (1992) identified parental differences in DNA methylation at the D15S9 locus, identified by the highly evolutionarily conserved cDNA, DN34. However, Buiting et al., (1993) demonstrated that the shortest region of deletion overlap in Prader-Willi syndrome does not include this locus, but does include the marker PW71 (D15S63) and the SNRPN gene. PW71 is subject to sex-specific methylation (Dittrich et al., 1993). Reed and Leff (1994) demonstrated maternal imprinting of the SNRPN gene in humans with Prader-Willi syndrome. Wevrick et al., (1994) identified a gene, IPW, from the Prader-Willi region. They suggested that this gene functions at the RNA level, similar to H19 and XIST. The gene was shown to be exclusively paternally expressed in fetal tissue and is located about 150 kb distal to SNRPN. Butler et al., (1996) reported a female case with a very small 100-200 kb deletion including the SNRPN gene but not the PW71 gene. She had clinical features of Prader-Willi syndrome but apparently no behaviour problems or hyperphagia, and borderline normal intelligence at the age of 6 years. Note Buiting et al., (1999) reported five families where there was a 28-kb deletion spanning the PW71 gene without pathological effect or abnormalities in imprinting. This appeared to be a neutral variant. Reis et al., (1994) reported abnormal maternal imprinting of paternal alleles at loci in the 15q11-q13 region in a small proportion of cases. Buiting et al., (1995) identified a putative imprinting centre proximal to the Prader-Willi syndrome critical region. Cases with deletion of this region on the paternal 15 had maternal-type imprinting. Ohta et al., (1999) studied further patients with imprinting mutations. Buiting et al., (1998) studied patients with Prader-Willi syndrome and Angelman syndrome with abnormalities of imprinting, but no evidence of a microdeletion of the imprinting centre. All cases were sporadic, and the authors suggested that these cases have a low recurrence risk. However note that Buiting et al., (2000) reported a normal male with two affected daughters with a microdeletion affecting the chromosome 15 imprinting centre.
Dittrich et al., (1996) identified novel transcripts of the SNRPN gene, lacking protein coding potential. Deletions in the SNRPN gene were found in three Prader-Willi cases. The authors suggest that deletion of exon 1 of the SNRPN gene are associated with a block of the maternal to paternal imprint switch. Bielinska et al., (2000) studied a male with a mosaic deletion of exon 1 of the SNRPN gene and showed that the deletion chromosome acquired a maternal methylation imprint in his somatic cells. Similar findings were also shown in chimeric mice. The studies demonstrated that the imprinting sensor element is not only required for the establishment of the paternal imprint, but also for its postzygotic maintenance. Kubota et al., (1996) provided data showing that SNRPN methylation analysis may be useful for prenatal diagnosis using CVS samples, but not PW71, in families known to carry imprinting centre defects. Glenn et al., (2000) confirm this from 24 cases of prenatal diagnosis of Prader-Willi and Angelman syndromes. Rogan et al., (1998) reported two cases with relaxation of imprinting. Although the SNRPN gene appeared to be imprinted, other imprinted genes in the region were normally expressed. The patients had a partial Prader-Willi phenotype. Wevrick and Francke (1996) reported a diagnostic test by looking at SNRPN expression by PCR analysis of reverse transcribed mRNA in leukocytes. MacDonald and Wevrick (1997) identified a gene necdin, which is deleted in Prader-Willi syndrome and is expressed exclusively from the paternally inherited allele. This makes it a good candidate for some of the features of Prader-Willi syndrome. Necdin codes for a nuclear protein expressed exclusively in differentiated neurons in the brain in the mouse. G‚rard et al., (1999) knocked out the necdin gene and showed that mice inheriting a paternal deletion had early post-natal lethality, whereas those inheriting a maternal deletion were normal.
de los Santos et al., (2000) identified a novel imprinted gene, PWCR1, mapping to the Prader-Willi deletion region. This gene was expressed only from the paternal allele and required the imprinting-centre regulatory element for expression. The gene was intronless and did not appear to encode a protein product. PWCR1 was highly expressed in the brain.
LaSalle and Lalande (1996) demonstrated association between maternal and paternal chromosome 15s during late S phase of mitosis. This was not present in cells from Angelman or Prader-Willi patients.
Schulze et al., (1996) reported a case with a translocation through the SNRPN gene with features of Prader-Willi syndrome. Methylation and expression studies suggested that the paternal SNRPN gene was unaffected and that sequences distal to the gene may be critical for the Prader-Willi phenotype. Sun et al., (1996) reported a patient with a de novo translocation through the SNRPN gene with features of Prader-Willi syndrome. The translocation was paternal in origin. Kuslich et al., (1999) reported a boy with a balanced translocation interrupting the second and third exons of the SNRPN gene. Wirth et al., (2001) studied another patient with a de novo balanced reciprocal translocation with one breakpoint in proximal 15q. They demonstrated a translocation breakpoint cluster between SNURF-SNRPN and IPW. Ishikawa et al., (1996) reported affected sibs with Prader-Willi syndrome who were apparently just deleted for SNRPN by FISH, but not GABRB3, or other probes in the Prader-Willi critical region. Surprisingly, no comment is made about FISH studies on the parents.
Coppes et al., (1993) reported a case with a paternal deletion of 15q11-q13 and associated Wilms' tumour. No deletion or disomy for 11p was found. Cassidy et al., (2000) provides a good review of the clinical and molecular features up to 2000.
Hassan et al. (2016) described a female with a rare atypical submicroscopic deletion involving imprinting center and encompassing the SNURF-SNRPN gene complex and adjacent non-coding RNA SNORD116. The authors compared her clinical findings to the findings of other individuals in the literature with similar atypically sized deletions without involvement of the imprinting center. Individuals with involvement of the minimal critical region had better growth and fewer cognitive problems.
Cao et al. (2017) described a female patient with a de novo 6.4 kb deletion in 15q11.2 region, encompassing SNURF/SNRPN genes and being the shortest deletion reported up to date associated with PWS phenotype.

* This information is courtesy of the L M D.
If you find a mistake or would like to contribute additional information, please email us at: [email protected]

Seja mais rápido e preciso Diagnóstico Genético!

Mais de 250,000 pacientes analisados com sucesso!
Não espere anos por um diagnóstico. Aja agora e economize um tempo valioso.

Começa aqui!

"Nosso caminho para o diagnóstico de uma doença rara foi uma jornada de 5 anos que só posso descrever como uma viagem sem mapa. Não sabíamos nosso ponto de partida. Não sabíamos nosso destino. Agora nós temos esperança. "

Imagem

Paula e Bobby
Pais de lillie

O que é FDNA Telehealth?

A FDNA Telehealth é uma empresa líder em saúde digital que fornece acesso mais rápido a análises genéticas precisas.

Com uma tecnologia hospitalar recomendada pelos principais geneticistas, nossa plataforma exclusiva conecta pacientes a Especialistas Em Genética para responder às suas perguntas mais urgentes e esclarecer quaisquer dúvidas que possam ter sobre seus Sintomas.

Benefícios do FDNA Telehealth

Ícone FDNA

Credibility

Nossa plataforma é usada atualmente por mais de 70% dos geneticistas e tem sido usada para diagnosticar mais de 250,000 pacientes em todo o mundo.

Ícone FDNA

Acessibilidade

O FDNA Telehealth fornece análise facial e triagem em minutos, seguido por acesso rápido a conselheiros genéticos e geneticistas.

Ícone FDNA

Fácil de usar

Nosso processo contínuo começa com um diagnóstico online inicial por um conselheiro genético e segue por consultas com geneticistas e testes genéticos.

Ícone FDNA

Acurácia - Precisão

Recursos e tecnologia avançada de inteligência artificial (AI) com uma taxa de precisão de 90% para uma maior precisão análise genética.

Ícone FDNA

Valor para
Dinheiro

Acesso mais rápido a conselheiros genéticos, geneticistas, testes genéticos e um diagnóstico. Em até 24 horas, se necessário. Economize tempo e dinheiro.

Ícone FDNA

Privacidade e segurança

Garantimos a máxima proteção de todas as imagens e informações do paciente. Seus dados estão sempre protegidos, protegidos e criptografados.

O FDNA Telehealth pode aproximar você de um diagnóstico.
Agende uma reunião de Aconselhamento Genitico online dentro de 72 horas!

EspañolDeutschPortuguêsFrançaisEnglish